EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent: 15.06.2022 Bulletin 2022/24

(21) Application number: 18169122.1

(22) Date of filing: 24.04.2018

(51) International Patent Classification (IPC):
A01H 1/04 (2006.01)
C12Q 1/68 (2018.01)
C12N 9/14 (2006.01)
C12N 15/82 (2006.01)

(52) Cooperative Patent Classification (CPC):
C12N 15/8255; A01H 1/04; C12N 9/0071;
C12N 15/8216; C12Q 1/6895; C12Y 114/13088;
C12Q 2600/156

(54) PLANTS WITH IMPROVED DIGESTIBILITY AND MARKER HAPLOTYPES
PLANTES À DIGESTIBILITÉ AMÉLIORÉE ET HAPLOTYPES MARQUEURS

(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(43) Date of publication of application: 30.10.2019 Bulletin 2019/44

(73) Proprietary: KWS SAAT SE & Co. KGaA
37574 Einbeck (DE)

(72) Inventors:
• KLOIBER-MAITZ, Monika
37574 Einbeck (DE)
• BOLDUAN, Therese
37574 Einbeck (DE)
• OUZUNOVA, Milena
37077 Göttingen (DE)
• MEYER, Nina
37574 Einbeck (DE)
• LOPEZ-DURAN, Carolina
37574 Einbeck (DE)

(56) References cited:
WO-A1-2010/054191

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
The invention relates to quantitative trait loci (QTL) and associated markers involved in and/or associated with improved digestibility of plants and plant parts, such as maize. The invention further relates to uses of such QTL or markers for identification and/or selection purposes, as well as transgenic or non-transgenic plants.

FIELD OF THE INVENTION

[0001] The invention relates to quantitative trait loci (QTL) and associated markers involved in and/or associated with improved digestibility of plants and plant parts, such as maize. The invention further relates to uses of such QTL or markers for identification and/or selection purposes, as well as transgenic or non-transgenic plants.

BACKGROUND OF THE INVENTION

[0002] Maize (Zea mays L.) is the most important annual forage crop in the world. More than 3 million hectares of maize are ensiled each year, mainly in Northern Europe. Due to high energy content and feed conversion efficiency, the forage maize is an important food crop for dairy and beef cattle, and is affecting significantly the milk and meat production. There is a wide genetic variation in forage characteristics for both the entire maize plant and stover (Geiger et al. 1992; Barrière et al. 2003).

Therefore, improving digestibility is a major goal for forage maize breeding programs. The energy supplied by forage to a ruminant or herbivore animal diet is related to forage ingestibility and digestibility. The digestibility of any forage constituent (dry matter, organic matter, or cell wall) is measured as percentage of silage absorbed in the animal digestive tract (Barrière et al. 2003). The overall digestibility of forage maize is affected by the highly digestible grain and stover fraction. Stover composition and digestibility limits forage maize quality. Major stover fractions are hemicelluloses, cellulose, and lignins. Modern forage maize cultivars combine high dry matter yield with high stover digestibility.

Additionally, the use of NIRS has been reported to measure digestibility traits accurately in many forage crops including maize (Lübbecket al. 1997a, b; Zimmer et al. 1990). Lübbecket al. (1997a, b) first published QTL related to forage maize agronomic and quality traits, and QTL for whole plant digestibility. Exploiting available genetic variation for stover digestibility by marker-assisted selection (MAS) seems to be a promising way to improve forage digestibility. Besides genetic variance, environmental variation might be the reason for those inconsistent traits. QTL analyses of forage traits in four different maize populations revealed only few QTL showing epistatic interactions or interactions with the environment (Lübbecket al. 1998). Seven QTL for DNDF were detected by using 242 RILs derived from the cross F838 x F286 which were evaluated in per se value experiments in six environments, and found two major QTL (Barrière et al. 2010). Additional QTL analyses were conducted by using RIL progeny derived from a cross between an old dent and modern lodent lines, and new QTL in bins 2.06 and 5.04 for ADL/NDF and DNDF were first reported (Barrière et al. 2012).

It is therefore an objective of the present invention to address one or more of the shortcomings of the prior art. There is a persistent need for improving digestibility of fodder crops, as well as the identification of plants, including particular plant parts or derivatives having increased digestibility. In particular, it is an aim of the present invention to provide new major QTL for digestibility and the causative gene(s) and the provision of markers which allow the economical use of these QTL in maize development and breeding.

SUMMARY OF THE INVENTION

[0007] The present invention is based on the identification of a major QTL for plant digestibility as well as the identification of a F35H gene linked to and responsible for the QTL for plant digestibility and description of a unique marker haplotype for improved digestibility.

[0008] Molecular markers have been identified which are associated with plant digestibility, and marker alleles associated with improved digestibility are described. One of the described marker alleles is a mutated F35H gene.

The invention in particular relates to methods for detecting the identified QTL allele associated with improved digestibility, as well as detection of any of the described marker alleles. The invention further relates to the described marker alleles and polynucleic acids useful for detection of the marker alleles, such as primers and probes, and kits comprising such. The invention further relates to methods for improving digestibility of maize plant or plant part from maize, in particular by artificially introducing in plants and/or selecting plants comprising, the marker alleles described herein, such as in particular inducing F35H mutations, preferably mutations altering F35H expression or F35H enzymatic activity, e.g. reducing or eliminating F35H expression or F35H activity or otherwise reducing F35H expression or F35H activity, increasing F35H activity. The invention further relates to maize plants having improved digestibility, as well
as plant parts, in particular stover, having improved digestibility, wherein the maize plant or plant part from maize is not exclusively obtained by means of an essentially biological process.

[0010] The present invention is in particular captured by any one or any combination of one or more of the below numbered items [01] to [25], with any other item and/or embodiments.

[0011] A method for identifying a maize plant or plant part from maize having improved digestibility or for selecting a plant or plant part having improved digestibility comprising

(i) optionally, isolating genetic material, preferably genetic material, from at least one cell of the plant or plant part;

(ii) a) screening for the presence of a QTL allele, such as a QTL allele associated with improved digestibility, said QTL allele comprising a nucleotide sequence of a gene encoding a cytochrome P450 flavonoid 3',5'-hydroxylase (F35H), having a mutation leading to reduced or absent expression of the mRNA of the gene and/or the F35H protein (such as a knock-down or knock-out mutation), or a mutation leading to a non-functional F35H protein (e.g., truncated F35H protein) or an F35H protein having reduced enzymatic activity upon translation, or

(ii) b) screening for reduced or absent expression of the mRNA of a gene encoding a cytochrome P450 flavonoid 3',5'-hydroxylase (F35H) and/or the F35H protein or for a non-functional F35H protein (e.g., truncated F35H protein) or an F35H protein having reduced enzymatic activity, or

(ii) c) screening for the presence of a mutation leading to reduced or absent expression of the mRNA of a gene encoding a cytochrome P450 flavonoid 3',5'-hydroxylase (F35H) and/or the F35H protein (such as a knock-down or knock-out mutation), or a mutation leading to a non-functional F35H protein (e.g., truncated F35H protein) or an F35H protein having reduced enzymatic activity upon translation;

(iii) optionally selecting the plant or plant part in which the QTL or the mutation is present or in which the F35H mRNA and/or protein expression is reduced or eliminated or the enzymatic F35H activity is reduced;

wherein improved digestibility relates to increased digestibility of the maize plant or plant part from maize having the characteristic of a), b) or c) compared to a maize plant or plant part from maize not having such characteristic; and

wherein the unmutated F35H is selected from the group consisting of:

(i) a nucleotide sequence comprising the sequence of SEQ ID NO: 1;
(ii) a nucleotide sequence having the cDNA of SEQ ID NO: 2;
(iii) a nucleotide sequence encoding for an amino acid sequence having the amino acid sequence of SEQ ID NO: 3;
(iv) a nucleotide sequence having at least 80% identity to the sequence of SEQ ID NO: 1, or 2;
(v) a nucleotide sequence encoding for a polypeptide having at least 80% identity to the sequence of SEQ ID NO: 3;
(vi) a nucleotide sequence hybridizing with the reverse complement of a nucleotide sequence as defined in (i), (ii) or (iii) under stringent hybridization conditions.

[0012] The method according to item [01], wherein the method comprising screening for the presence of the molecular marker allele of ma61134xxx and/or one or more molecular marker alleles located in a chromosomal interval on chromosome 9 flanked by marker alleles ma61070s01 and ma30168s02, preferably by marker alleles ma50827s01 and ma16983s02, more preferably by marker alleles ma17117s01 and ma61125s01, preferably wherein the one or more molecular marker alleles are detectable by a polynucleic acid, such as an allele specific polynucleic acid (molecular marker), suitable for hybridization as forward primer and reverse primer to a locus in the chromosomal interval which co-segregates with the improved digestibility.

[0013] A maize plant or plant part from maize having improved digestibility comprising a QTL allele associated with improved digestibility, said QTL allele comprising a nucleotide sequence of a gene encoding a cytochrome P450 flavonoid 3',5'-hydroxylase (F35H), having a mutation leading to reduced or absent expression of the mRNA of the gene and/or the F35H protein, or a mutation leading to a non-functional F35H protein (e.g., truncated F35H protein) or an F35H protein having reduced enzymatic activity upon translation; or a maize plant or plant part from maize comprising a nucleotide sequence of a gene encoding a cytochrome P450 flavonoid 3',5'-hydroxylase (F35H), having a mutation leading to reduced or absent expression of the mRNA of the gene and/or the F35H protein, or a mutation leading to a non-functional F35H protein (e.g., truncated F35H protein) or an F35H protein having reduced enzymatic activity upon translation; or a maize plant or plant part from maize comprising a nucleotide sequence of a gene encoding a cytochrome
P450 flavonoid 3',5'-hydroxylase (F35H) having reduced or absent expression of the mRNA of the gene and/or the F35H protein or having reduced enzymatic activity; or a maize plant or plant part from maize comprising an RNAi molecule, such as dsRNA, siRNA, shRNA, or miRNA, directed against, targeting, or hybridizing with a nucleotide sequence encoding an F35H protein, or comprising a polynucleotide sequence encoding (and expressing or being capable of expressing) an RNA molecule directed against, targeting, or hybridizing with a nucleotide sequence encoding an F35H protein; or a maize plant or plant part from maize comprising an RNA-specific CRISPR/Cas system, such as a CRISPR/Cas13a system, directed against or targeting a nucleotide sequence encoding a cytochrome P450 flavonoid 3',5'-hydroxylase (F35H) or one or more polynucleotide sequence(s) encoding (and expressing or being capable of expressing) said RNA-specific CRISPR/Cas system;

wherein improved digestibility relates to increased digestibility of the maize plant or plant part from maize having the characteristic of a), b), c), d) or e) compared to a maize plant or plant part from maize not having such characteristic, and wherein the unmutated F35H is selected from the group consisting of:

(i) a nucleotide sequence comprising the sequence of SEQ ID NO: 1;
(ii) a nucleotide sequence having the cDNA of SEQ ID NO: 2;
(iii) a nucleotide sequence encoding for an amino acid sequence having the amino acid sequence of SEQ ID NO: 3;
(iv) a nucleotide sequence having at least 80% identity to the sequence of SEQ ID NO: 1, or 2;
(v) a nucleotide sequence encoding for a polypeptide having at least 80% identity to the sequence of SEQ ID NO: 3; and
(vi) a nucleotide sequence hybridizing with the reverse complement of a nucleotide sequence as defined in (i), (ii) or (iii) under stringent hybridization conditions;

wherein the maize plant or plant part from maize is not exclusively obtained by means of an essentially biological process.

[0014] The maize plant or plant part from maize according to item [03] comprising the marker allele of ma61134xxx

[0015] The maize plant or plant part from maize according to item [03] or [04], wherein said plant comprising said QTL allele, said marker allele, said nucleotide sequence of the gene encoding the cytochrome P450 flavonoid 3',5'-hydroxylase (F35H) having the mutation, said RNAi molecule or said polynucleotide sequence encoding (and expressing or being capable of expressing) the RNAi molecule, said RNA-specific CRISPR/Cas system and/or said one or more polynucleotide sequence(s) encoding (and expressing or being capable of expressing) the RNA-specific CRISPR/Cas system as transgene or as (gene-) edited endogene.

[0016] A method for improving digestibility of a maize plant or plant part from maize, comprising introducing through stable or transient integration by means of transformation, insertion using gene editing technology or modification using random or targeted mutagenesis into the genome of the plant or plant part

(a) a nucleotide sequence of a gene encoding a cytochrome P450 flavonoid 3',5'-hydroxylase (F35H), having a mutation leading to reduced or absent expression of the mRNA of the gene and/or the F35H protein (such as a knock-down or knock-out mutation), or a mutation leading to a non-functional F35H protein (e.g., truncated F35H protein) or an F35H protein having reduced enzymatic activity upon translation.

[0017] A method for improving digestibility of a plant or plant part, comprising reducing expression of the mRNA of a gene encoding a cytochrome P450 flavonoid 3',5'-hydroxylase (F35H) and/or the F35H protein, reducing the enzymatic activity of a cytochrome P450 flavonoid 3',5'-hydroxylase (F35H);

wherein improved digestibility relates to increased digestibility of maize plant or plant part from maize having the characteristic of a) or b) compared to a maize plant or plant part from maize not having such characteristic, and

wherein the unmutated F35H is selected from the group consisting of:

(i) a nucleotide sequence comprising the sequence of SEQ ID NO: 1, 4, or 7;
(ii) a nucleotide sequence having the cDNA of SEQ ID NO: 2, 5, or 8;
(iii) a nucleotide sequence encoding for an amino acid sequence having the amino acid sequence of SEQ ID NO: 3, 6, or 9;
(iv) a nucleotide sequence having at least 80% identity to the sequence of SEQ ID NO: 1, 2, 4, 5, 7, or 8;
(v) a nucleotide sequence encoding for a polypeptide having at least 80% identity to the sequence of SEQ ID
NO: 3, 6, or 9; and

(vi) a nucleotide sequence hybridizing with the reverse complement of a nucleotide sequence as defined in (i),
(ii) or (iii) under stringent hybridization conditions.

[0018] The method according to item [07], comprising

(a) introducing into a nucleotide sequence of an endogenous gene encoding the cytochrome P450 flavonoid 3',5'-hydroxylase (F35H) (in the genome of the plant or the plant part) a mutation leading to reduced or absent expression of the mRNA of the gene and/or the F35H protein (such as a knock-down or knock-out mutation), or a mutation leading to a non-functional F35H protein (e.g., truncated F35H protein) or an F35H protein having reduced enzymatic activity upon translation, or

(b) introducing into the plant or the plant part an RNAi molecule, such as dsRNA, siRNA, shRNA, or miRNA, directed against, targeting, or hybridizing with a nucleotide sequence encoding the F35H protein, or a polynucleotide sequence encoding (and expressing or being capable of expressing) an RNAi molecule directed against, targeting, or hybridizing with a nucleotide sequence encoding the F35H protein, or

(c) introducing into the plant or the plant part an RNA-specific CRISPR/Cas system, such as a CRISPR/Cas13a system, directed against or targeting a nucleotide sequence encoding the F35H protein, or one or more polynucleotide sequence(s) encoding (and expressing or being capable of expressing) said RNA-specific CRISPR/Cas system, or

(d) introducing into the plant or the plant part a chemical compound or an antibody reducing (or being capable to reduce) the enzymatic activity of the F35H protein or inhibiting (or being capable to inhibit) the enzymatic activity of the F35H protein upon interaction with said F35H.

[0019] A method for producing a maize plant or plant part from maize having improved digestibility, comprising

(a) introducing through stable or transient integration by means of transformation, insertion using gene editing technology or modification using random or targeted mutagenesis into the genome of a plant or plant part a nucleotide sequence of a gene encoding a cytochrome P450 flavonoid 3',5'-hydroxylase (F35H), having a mutation leading to reduced or absent expression of the mRNA of the gene and/or the F35H protein (such as a knock-down or knock-out mutation), or a mutation leading to a non-functional F35H protein (e.g., truncated F35H protein) or an F35H protein having reduced enzymatic activity upon translation, or

(b) introducing through modification using random or targeted mutagenesis into a nucleotide sequence of an endogenous gene encoding the cytochrome P450 flavonoid 3',5'-hydroxylase (F35H) (in the genome of the plant or a plant part) a mutation leading to reduced or absent expression of the mRNA of the gene and/or the F35H protein (such as a knock-down or knock-out mutation), or a mutation leading to a non-functional F35H protein (e.g., truncated F35H protein) or an F35H protein having reduced enzymatic activity upon translation, or

(c) introducing through stable or transient integration by means of transformation or insertion using gene editing technology into the plant or the plant part an RNAi molecule, such as dsRNA, siRNA, shRNA, or miRNA, directed against, targeting, or hybridizing with a nucleotide sequence encoding the F35H protein, or a polynucleotide sequence encoding (and expressing or being capable of expressing) an RNAi molecule directed against, targeting, or hybridizing with a nucleotide sequence encoding the F35H protein, or

(d) introducing through stable or transient integration by means of transformation or insertion using gene editing technology into the plant or the plant part an RNA-specific CRISPR/Cas system, such as a CRISPR/Cas13a system, directed against or targeting a nucleotide sequence encoding the F35H protein, or one or more polynucleotide sequence(s) encoding (and expressing or being capable of expressing) said RNA-specific CRISPR/Cas system, or

(e) introducing into the plant or the plant part a chemical compound or an antibody reducing (or being capable to reduce) the enzymatic activity of the F35H protein upon interaction with said F35H; and

(f) optionally, regenerating a plant from the plant part of any of (a) to (e);

wherein improved digestibility relates to increased digestibility of maize plant or plant part from maize having the characteristic of a), b), c), d) or e) compared to a maize plant or plant part from maize not having such characteristic,
and

wherein the unmutated F35H is selected from the group consisting of:

(i) a nucleotide sequence comprising the sequence of SEQ ID NO: 1, 4, or 7;
(ii) a nucleotide sequence having the cDNA of SEQ ID NO: 2, 5, or 8;
(iii) a nucleotide sequence encoding for an amino acid sequence having the amino acid sequence of SEQ ID NO: 3, 6, or 9;
(iv) a nucleotide sequence having at least 80% identity to the sequence of SEQ ID NO: 1, 2, 4, 5, 7, or 8;
(v) a nucleotide sequence encoding for a polypeptide having at least 80% identity to the sequence of SEQ ID NO: 3, 6, or 9; and
(vi) a nucleotide sequence hybridizing with the reverse complement of a nucleotide sequence as defined in (i), (ii) or (iii) under stringent hybridization conditions.

[0020] A plant or plant part produced by the method according to item [9].
[0021] A progeny of the plant according to any one of item [03] to [05] or [10].
[0022] The method, plant, or plant part according to any of the preceding items, wherein said plant is a maize plant, the QTL is located on chromosome 9 and comprises and/or is flanked by marker alleles ma61070s01 and ma30168s02, preferably by marker alleles ma50827s01 and ma16983s02, more preferably by marker alleles ma17117s01 and ma61125s01.
[0023] The method, plant, or plant part according to any of the preceding items, wherein ma61134xxx is an insertion of one or more nucleotides between position 134254381 and 134254382 of chromosome 9 referenced to line PH207, preferably an insertion as set forth in SEQ ID NO: 12; and/or ma61070s01 is a single nucleotide polymorphism (SNP) at position 121588825 of chromosome 9 referenced to line PH207, wherein said nucleotide is A or T, preferably a single nucleotide polymorphism (SNP) as set forth in SEQ ID NO: 13; and/or ma30168s02 is a single nucleotide polymorphism (SNP) at position 139452428 of chromosome 9 referenced to line PH207, wherein said nucleotide is A or G, preferably a single nucleotide polymorphism (SNP) as set forth in SEQ ID NO: 14; and/or ma50827s01 is a single nucleotide polymorphism (SNP) at position 127454426 of chromosome 9 referenced to line PH207, wherein said nucleotide is A or G, preferably a single nucleotide polymorphism (SNP) as set forth in SEQ ID NO: 15; and/or ma16983s02 is a single nucleotide polymorphism (SNP) at position 137363784 of chromosome 9 referenced to line PH207, wherein said nucleotide is A or G, preferably a single nucleotide polymorphism (SNP) as set forth in SEQ ID NO: 16; and/or ma17117s01 is a single nucleotide polymorphism (SNP) at position 132038900 of chromosome 9 referenced to line PH207, wherein said nucleotide is A or G, preferably a single nucleotide polymorphism (SNP) as set forth in SEQ ID NO: 17; and/or ma61125s01 is a single nucleotide polymorphism (SNP) at position 135947973 of chromosome 9 referenced to line PH207, wherein said nucleotide is A or G, preferably a single nucleotide polymorphism (SNP) as set forth in SEQ ID NO: 18.
[0024] The method, plant, or plant part according to any of the preceding items, wherein the mutation is a frameshift mutation or a non-sense-mutation, results in an altered expression of the nucleotide sequence or an altered enzymatic activity of the encoded protein, preferably in a reduced or absent expression of the nucleotide sequence or a reduced enzymatic activity of the encoded protein or an increased enzymatic activity of the encoded protein, results in an altered enzymatic activity of the encoded protein or an increased enzymatic activity of the encoded protein, results in an altered enzymatic activity of the encoded protein or an increased enzymatic activity of the encoded protein, results in an altered enzymatic activity of the encoded protein or an increased enzymatic activity of the encoded protein, results in an altered enzymatic activity of the encoded protein or an increased enzymatic activity of the encoded protein.
[0025] The method, plant, or plant part according to any of the preceding items, wherein the mutation is an insertion, preferably in an exon, preferably an insertion in the first exon, of one or more nucleotides, preferably a frame shift insertion, more preferably the insertion is 187 nucleotides or about 187 nucleotides and/or the insertion is between position 97 and 98 of the F35H gene represented by the nucleotide sequence of SEQ ID NO: 1. In a particular preferred embodiment the mutated F35H comprises the nucleotide sequence of SEQ ID NO: 11.
[0026] The method, plant or plant part according to any of the preceding items, wherein said plant part is not propagation material.
[0027] The method, plant, or plant part according to any of the preceding items, wherein said plant part is stover.
[0028] The method, plant, or plant part according to any of the preceding items, wherein the plant is or the plant part is from maize.
[0029] A polynucleic acid, such as an allele specific polynucleic acid (molecular marker), specifically hybridising with any of the sequences of SEQ ID NO: 10, 12, 13, 14, 15, 16, 17 or 18, or the complement or the reverse complement thereof.
[0030] Use of the polynucleic acid according to item [19] or polynucleic acid, such as an allele specific polynucleic acid (molecular marker), for identification of a plant or plant part having improved digestibility or for selection of a plant or plant part having improved digestibility according to any one of item [03] to [05], preferably in the method according to item [01] or [02], wherein preferably the polynucleic acid is suitable for hybridization as forward primer and reverse
primer to a locus in a chromosomal interval which co-segregates with the improved digestibility, wherein the chromosomal interval is on chromosome 9 and flanked by marker alleles ma50827s01 and ma16983s02, preferably by marker alleles ma50827s01 and ma16983s02, more preferably by marker alleles ma17117s01 and ma61125s01.

[0031] A method for producing an ensilaged plant material or animal feed having improved digestibility, comprising

(a) growing the plant according to any one of item [03] to [05] or [11] or a plant identified or identifiable by the method of claims 1 or 2,

(b) harvesting the plant or a part thereof,

(c) optionally, chopping and/or crushing the plant or a part thereof, and

(d) ensiling the plant or a part thereof of (b) or (c), optionally by adding a stimulant like a bacterial inoculant, a sugar, and an enzyme.

BRIEF DESCRIPTION OF THE FIGURES

[0032]

Figure 1: DNDF (Digestible Neutral Detergent Fiber) effects of QTL on chromosome 9 of maize (Zea mays). Identification of a strong QTL for digestibility on chromosome 9. Percentage of DNDF of maize stover is indicated.

Figure 2: Positions of marker loci for silage QTL. Markers have been found by SeqCapture on the basis of AGPv02 and WGS (whole genome sequencing) of QTL line and comparison to PH207 reference.

Figure 3: Fine-mapped genetic region of silage QTL by molecular markers in different recombinant genotypes.

Figure 4: Nucleotide sequence alignment of an F35H reference gene and a mutated F35H gene according to an embodiment of the invention.

DETAILED DESCRIPTION OF THE INVENTION

[0033] Before the present system and method of the invention are described, it is to be understood that this invention is not limited to particular systems and methods or combinations described, since such systems and methods and combinations may, of course, vary. It is also to be understood that the terminology used herein is not intended to be limiting, since the scope of the present invention will be limited only by the appended claims.

[0034] As used herein, the singular forms "a", "an", and "the" include both singular and plural referents unless the context clearly dictates otherwise.

[0035] The terms "comprising", "comprises" and "comprised of" as used herein are synonymous with "including", "includes" or "containing", "contains", and are inclusive or open-ended and do not exclude additional, non-recited members, elements or method steps. It will be appreciated that the terms "comprising", "comprises" and "comprised of" as used herein comprise the terms "consisting of", "consists" and "consists of", as well as the terms "consisting essentially of", "consists essentially" and "consists essentially of".

[0036] The recitation of numerical ranges by endpoints includes all numbers and fractions subsumed within the respective ranges, as well as the recited endpoints.

[0037] The term "about" or "approximately" as used herein when referring to a measurable value such as a parameter, an amount, a temporal duration, and the like, is meant to encompass variations of +/-20% or less, preferably +/-10% or less, more preferably +/-5% or less, and still more preferably +/-1% or less of and from the specified value, insofar such variations are appropriate to perform in the disclosed invention. It is to be understood that the value to which the modifier "about" or "approximately" refers is itself also specifically, and preferably, disclosed.

[0038] Whereas the terms "one or more" or "at least one", such as one or more or at least one member(s) of a group of members, is clear per se, by means of further exemplification, the term encompasses inter alia a reference to any one of said members, or to any two or more of said members, such as, e.g., any ≥3, ≥4, ≥5, ≥6 or ≥7 etc. of said members, and up to all said members.

[0039] Unless otherwise defined, all terms used in disclosing the invention, including technical and scientific terms, have the meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. By means of further guidance, term definitions are included to better appreciate the teaching of the present invention. Standard reference works setting forth the general principles of recombinant DNA technology include Molecular Cloning: A Laboratory Manual, 2nd ed., vol. 1-3, ed. Sambrook et al., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989; Current Protocols in Molecular Biology, ed. Ausubel et al., Greene Publishing and Wiley-Interscience, New York, 1992 (with periodic updates) ("Ausubel et al. 1992"); the series Methods in Enzymology (Academic Press, Inc.); Innis
As used herein, “sugar cane” refers to a plant of the species $\text{Saccharum officinarum}$, for example, in Davis, B. D. et al., Microbiology, 3rd edition, Harper & Row, publishers, Philadelphia, Pa. (1980).

[0040] In the following passages, different aspects of the invention are defined in more detail. Each aspect so defined may be combined with any other aspect or aspects unless clearly indicated to the contrary. In particular, any feature indicated as being preferred or advantageous may be combined with any other feature or features indicated as being preferred or advantageous.

[0041] Reference throughout this specification to “one embodiment” or “an embodiment” means that a particular feature, structure or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. Thus, appearances of the phrases “in one embodiment” or “in an embodiment” in various places throughout this specification are not necessarily all referring to the same embodiment, but may. Furthermore, the particular features, structures or characteristics may be combined in any suitable manner, as would be apparent to a person skilled in the art from this disclosure, in one or more embodiments. Furthermore, while some embodiments described herein include some but not other features included in other embodiments, combinations of features of different embodiments are meant to be within the scope of the invention, and form different embodiments, as would be understood by those in the art. For example, in the appended claims, any of the claimed embodiments can be used in any combination.

[0042] In the following detailed description of the invention, reference is made to the accompanying drawings that form a part hereof, and in which are shown by way of illustration only of specific embodiments in which the invention may be practiced. It is to be understood that other embodiments may be utilised and structural or logical changes may be made without departing from the scope of the present invention. The following detailed description, therefore, is not to be taken in a limiting sense, and the scope of the present invention is defined by the appended claims.

[0043] Preferred items (features) and embodiments of this invention are set herein below. Each items and embodiments of the invention so defined may be combined with any other item and/or embodiments unless clearly indicated to the contrary. In particular, any feature indicated as being preferred or advantageous may be combined with any other feature or features or items indicated as being preferred or advantageous.

[0044] As used herein, “maize” refers to a plant of the species $\text{Zea mays}$, preferably $\text{Zea mays ssp. mays}$.

[0045] As used herein, “sorghum” refers to a plant of the genus Sorghum, and includes without limitation $\text{Sorghum bicolor}$, $\text{Sorghum sudanense}$, $\text{Sorghum bicolor x Sorghum sudanense}$, $\text{Sorghum x alnum}$ ($\text{Sorghum bicolor x Sorghum halepense}$), $\text{Sorghum arundinaceum}$, $\text{Sorghum x drummondi}$, $\text{Sorghum halepense}$ and/or $\text{Sorghum propinquum}$.

[0046] As used herein, “sugar cane” refers to a plant of the species $\text{Saccharum officinarum}$.

[0047] The term “plant” includes whole plants, including descendants or progeny thereof. The term “plant part” includes any part or derivative of the plant, including particular plant tissues or structures, plant cells, plant protoplast, plant cell or tissue culture from which plants can be regenerated, plant calli, plant clumps and plant cells that are intact in plants or parts of plants, such as seeds, kernels, cobs, flowers, cotyledons, leaves, stems, buds, roots, root tips, stover, and the like. Plant parts may include processed plant parts or derivatives, including flower, oils, extracts etc. In certain embodiments, the plant part or derivative as referred to herein is stover.

[0048] Stover as used herein has its ordinary meaning known in the art. By means of further guidance, and without limitation, stover may comprise, consist of, or consist essentially of the leaves and stalks of field crops, such as maize or sorghum that are commonly left in a field after harvesting the grain, or as sugar cane. Stover may also include cobs (e.g. the central core of an ear of maize, without the kernels). Stover may also exclude cobs. Stover may also include husks or hulls (e.g. the leafy outer covering of an ear of maize). Stover may also exclude husks or hulls. Stover is similar to straw, the residue left after any cereal grain or grass has been harvested at maturity for its seed. It can be directly grazed by cattle or dried for use as fodder. (Maize) stover can be used as feed, whether grazed as forage, chopped as silage to be used later for fodder, or collected for direct (non-ensiled) fodder use. Maize forage is usually ensiled in cooler regions, but it can be harvested year-round in the tropics and fed as green forage to the animals. In the silage use case, it is usual for the entire plant (grain and stover together) to be chopped into pieces which are then crushed between rollers while harvesting. In addition to the stalks, leaves, husks, and cobs remaining in the field, kernels of grain may also be left over from harvest. These left over kernels, along with the corn stover, serve as an additional feed source for grazing cattle.

[0049] In certain embodiments, the plant part or derivative comprises, consists of, or consists essentially of one or more, preferably all of stalks, leaves, and cobs. In certain embodiments, the plant part or derivative is leaves. In certain embodiments, the plant part or derivative is stalks. In certain embodiments, the plant part or derivative is cobs. In certain embodiments, the plant part or derivative comprises, consists of, or consists essentially of one or more, preferably all of stalks and leaves. In certain embodiments, the plant part or derivative comprises, consists of, or consists essentially of one or more, preferably all of stalks, and cobs. In certain embodiments, the plant part or derivative is not (functional) propagation material, such as germplasm, a seed, or plant embryo or other material from...
which a plant can be regenerated. In certain embodiments, the plant part or derivative does not comprise (functional) male and female reproductive organs. In certain embodiments, the plant part or derivative is or comprises propagation material, but propagation material which does not or cannot be used (anymore) to produce or generate new plants, such as propagation material which have been chemically, mechanically or otherwise rendered non-functional, for instance by heat treatment, acid treatment, compaction, crushing, chopping, ensilaging etc.

[0050] As used herein, "digestibility" refers to and is measured as percentage of product (such as a maize, sorghum or sugar cane plant or plant part or derivative, including for instance dry matter, organic matter, or cell wall of the product) absorbed in the animal digestive tract (Barrière et al. 2003). Biological and chemical methods have been developed to assay the digestibility of maize and other forage crops (Van Soest et al. 1963). Neutral detergent fiber (NDF), the residual after removing cell soluble content, is an important plant cell wall and cellulose indicator. In vitro NDF digestibility (IVNDFD) of forages is an estimate of cell wall digestibility assuming that the non-NDF part of plant material was completely digestible (Méchin et al. 2000). Additionally, the use of NIRS has been reported to measure digestibility traits accurately in many forage crops including maize (Lübberstedt et al. 1997a, b; Zimmer et al. 1990). In certain embodiments, the animal is a mammal. In certain embodiments, the animal is a ruminant. In certain embodiments, the animal is a herbivore. In certain embodiments, the animal is a herbivorous mammal.

[0051] Improved digestibility as referred to herein, relates to increased digestibility of a plant or plant part or derivative having a characteristic according to the invention, such as a mutation, marker, SNP, or QTL as described herein elsewhere, compared to a plant or plant part or derivative not having such characteristic. In certain embodiments, an improved or increased digestibility refers to an increase in mean DNDF by at least 1%, such as at least 2%, at least 3%, at least 4%, at least 5%, at least 6%, at least 7%, at least 8%, at least 9%, or at least 10%, preferably at least 2%, more preferably at least 3%, such as at least 4%.

[0052] The term "locus" (loci plural) means a specific place or places or a site on a chromosome where for example a QTL, a gene or genetic marker is found. As used herein, the term "quantitative trait locus" or "QTL" has its ordinary meaning known in the art. By means of further guidance, and without limitation, a QTL may refer to a region of DNA that is associated with the differential expression of a quantitative phenotypic trait in at least one genetic background, e.g., in at least one breeding population. The region of the QTL encompasses or is closely linked to the gene or genes that affect the trait in question. An "allele of a QTL" can comprise multiple genes or other genetic factors within a contiguous genomic region or linkage group, such as a haplotype. An allele of a QTL can denote a haplotype within a specified window wherein said window is a contiguous genomic region that can be defined, and tracked, with a set of one or more monomorphic and/or polymorphic markers. A haplotype can be defined by the unique fingerprint of alleles at each marker within the specified window. A QTL may encode for one or more alleles that affect the expressivity of a continuously distributed (quantitative) phenotype. In certain embodiments, the QTL as described herein may be homozygous. In certain embodiments, the QTL as described herein may be heterozygous.

[0053] As used herein, the term "allele" or "alleles" refers to one or more alternative forms, i.e. different nucleotide sequences, of a locus.

[0054] As used herein, the term "mutant alleles" or "mutation" of alleles include alleles having one or more mutations, such as insertions, deletions, stop codons, base changes (e.g., transitions or transversions), or alterations in splice junctions/splicing signal sites, which may or may not give rise to altered gene products. Modifications in alleles may arise in coding or non-coding regions (e.g. promoter regions, exons, introns or splice junctions).

[0055] As used herein, the terms "introgression", "introgressed" and "introgressing" refer to both a natural and artificial process whereby chromosomal fragments or genes of one species, variety or cultivar are moved into the genome of another species, variety or cultivar, by crossing those species. The process may optionally be completed by backcrossing to the recurrent parent. For example, introgression of a desired allele at a specified locus can be transmitted to at least one progeny via a sexual cross between two parents of the same species, where at least one of the parents has the desired allele in its genome. Alternatively, for example, transmission of an allele can occur by recombination between two donor genomes, e.g., in a fused protoplast, where at least one of the donor protoplasts has the desired allele in its genome. The desired allele can be, e.g., detected by a marker that is associated with a phenotype, at a QTL, a transgene, or the like. In any case, offspring comprising the desired allele can be repeatedly backcrossed to a line having a desired genetic background and selected for the desired allele, to result in the allele becoming fixed in a selected genetic background. "Introgression fragment" or "introgression segment" or "introgression region" refers to a chromosome fragment (or chromosome part or region) which has been introduced into another plant of the same or related species either artificially or naturally such as by crossing or traditional breeding techniques, such as backcrossing, i.e. the introgressed fragment is the result of breeding methods referred to by the verb "to introgress" (such as backcrossing). It is understood that the term "introgression fragment" never includes a whole chromosome, but only a part of a chromosome. The introgression fragment can be large, e.g. even three quarter or half of a chromosome, but is preferably smaller, such as about 50 Mb or less, such as about 30 Mb or less, about 20 Mb or less, about 25 Mb or less, about 10 Mb or less, about 9 Mb or less, about 8 Mb or less, about 7 Mb or less, about 6 Mb or less, about 5 Mb or less, about 4 Mb or less, about 3 Mb or less, about 2.5 Mb or 2 Mb or less, about 1 Mb (equals 1,000,000 base pairs) or less, or about 0.5 Mb (equals
A genetic element, a locus, an introgression fragment, an QTL, or a gene or allele conferring a trait (such as improved digestibility) is said to be "obtainable from" or can be "obtained from" or "derivable from" or can be "derived from" or "as present in" or "as found in" a plant or plant part as described herein elsewhere if it can be transferred from the plant in which it is present into another plant in which it is not present (such as a line or variety) using traditional breeding techniques without resulting in a phenotypic change of the recipient plant apart from the addition of the trait conferred by the genetic element, locus, introgression fragment, QTL, gene or allele. The terms are used interchangeably and the genetic element, locus, introgression fragment, QTL, gene or allele can thus be transferred into any other genetic background lacking the trait. Not only parts comprising the genetic element, locus, introgression fragment, QTL, gene or allele can be used, but also progeny/descendants from such plants which have been selected to retain the genetic element, locus, introgression fragment, QTL, gene or allele, can be used and are encompassed herein. Whether a plant (or genomic DNA, cell or tissue of a plant) comprises the same genetic element, locus, introgression fragment, QTL, gene or allele as obtainable from such plant can be determined by the skilled person using one or more techniques known in the art, such as phenotypic assays, whole genome sequencing, molecular marker analysis, trait mapping, chromosome painting, allelism tests and the like, or combinations of techniques. It will be understood that transgenic or gene-edited plants may also be encompassed.

As used herein the terms "transformation" and "transgenic modification" are all used herein as synonyms for the transfer of isolated and cloned nucleic acid molecule into the DNA, usually the chromosomal DNA or genome, of another organism/species or of the same organism/species but at a location which differs from the location at which the nucleic acid molecule naturally is located in the chromosomal DNA or genome.

"Introducing" in the meaning of the present invention includes stable or transient integration by means of transformation including Agrobacterium-mediated transformation, transfection, microinjection, biolistic bombardment, insertion using gene editing technology like CRISPR systems (e.g. CRISPR/Cas, in particular CRISPR/Cas9 or CRISPR/Cpf1), CRISPR/CasX, or CRISPR/CasY), TALENs, zinc finger nucleases or meganucleases, homologous recombination optionally by means of one of the below mentioned gene editing technology including preferably a repair template, modification of endogenous gene using random or targeted mutagenesis like TILLING or above mentioned gene editing technology, etc.

"Transgenic" or "genetically modified organisms" (GMOs) as used herein are organisms whose genetic material has been altered using techniques generally known as "recombinant DNA technology". Recombinant DNA technology encompasses the ability to combine DNA molecules from different sources into one molecule ex vivo (e.g. in a test tube). This terminology generally does not cover organisms whose genetic composition has been altered by conventional cross-breeding or by "mutagenesis" breeding, as these methods predate the discovery of recombinant DNA techniques. "Non-transgenic" as used herein refers to plants and food products derived from plants that are not "transgenic" or "genetically modified organisms" as defined above.

"Transgene" or "exogene" refers to a nucleic acid molecule or a genetic locus comprising a DNA sequence, such as a recombinant gene, which has been introduced into the genome of a plant by transformation, such as Agrobacterium mediated transformation. A plant comprising a transgene stably integrated into its genome is referred to as "transgenic plant". "Endogene" refers to a nucleic acid molecule or a genetic locus that naturally occurs in the genome of a plant. "Gene editing" or "genome editing" refers to genetic engineering in which DNA or RNA is inserted, deleted, modified or replaced in the genome of an organism. Gene editing may comprise targeted or non-targeted (random) mutagenesis. Targeted mutagenesis may be accomplished for instance with designer nucleases, such as for instance with meganucleases, zinc finger nucleases (ZFNs), transcription activator-like effector-based nucleases (TALEN), and the clustered regularly interspaced short palindromic repeats (CRISPR/Cas) system. These nucleases create site-specific double-strand breaks (DSBs) at desired locations in the genome. The induced double-strand breaks are repaired through nonhomologous end-joining (NHEJ) or homologous recombination (HR) or homology directed repair (HDR), resulting in targeted mutations or nucleic acid modifications. The use of designer nucleases, optionally together with a repair template/recombination template, is particularly suitable for generating gene knockouts or knockdowns. In certain embodiments, designer nucleases are developed which specifically induce a mutation in the F35H gene, as described herein elsewhere, such as to generate a mutated F35H or a knockout of the F35H gene. In certain embodiments, designer nucleases, in particular RNA-specific CRISPR/Cas systems are developed which specifically target the F35H mRNA, such as to cleave the F35H mRNA and generate a knockdown of the F35H gene/mRNA/protein. Delivery and expression systems of designer nuclease systems are well known in the art.

In certain embodiments, the nuclease or targeted/site-specific/homing nuclease is, comprises, consists essentially of, or consists of a (modified) CRISPR/Cas system or complex, (a modified) Cas protein, (a modified) zinc finger, a (modified) zinc finger nuclease (ZFN), (a modified) transcription factor-like effector (TALE), (a modified) transcription factor-like effector nuclease (TALEN), or a (modified) meganuclease. In certain embodiments, said (modified) nuclease or targeted/site-specific/homing nuclease is, comprises, consists essentially of, or consists of a (modified) RNA-guided
nuclease. It will be understood that in certain embodiments, the nucleases may be codon optimized for expression in plants. As used herein, the term "targeting" of a selected nucleic acid sequence means that a nuclease or nuclease complex is acting in a nucleotide sequence specific manner. For instance, in the context of the CRISPR/Cas system, the guide RNA is capable of hybridizing with a selected nucleic acid sequence. As uses herein, "hybridization" or "hybridizing" refers to a reaction in which one or more polynucleotides react to form a complex that is stabilized via hydrogen bonding between the bases of the nucleotide residues. The hydrogen bonding may occur by Watson Crick base pairing, Hoogsteen binding, or in any other sequence specific manner. The complex may comprise two strands forming a duplex structure, three or more strands forming a multi stranded complex, a single self-hybridizing strand, or any combination of these. A hybridization reaction may constitute a step in a more extensive process, such as the initiation of PGR, or the cleavage of a polynucleotide by an enzyme. A sequence capable of hybridizing with a given sequence is referred to as the "complement" of the given sequence.

As used herein, the term "targeting" of a selected nucleic acid sequence means that a nuclease or nuclease complex is acting in a nucleotide sequence specific manner. For instance, in the context of the CRISPR/Cas system, the guide RNA is capable of hybridizing with a selected nucleic acid sequence. As uses herein, "hybridization" or "hybridizing" refers to a reaction in which one or more polynucleotides react to form a complex that is stabilized via hydrogen bonding between the bases of the nucleotide residues. The hydrogen bonding may occur by Watson Crick base pairing, Hoogsteen binding, or in any other sequence specific manner. The complex may comprise two strands forming a duplex structure, three or more strands forming a multi stranded complex, a single self-hybridizing strand, or any combination of these. A hybridization reaction may constitute a step in a more extensive process, such as the initiation of PGR, or the cleavage of a polynucleotide by an enzyme. A sequence capable of hybridizing with a given sequence is referred to as the "complement" of the given sequence.

[0062] Gene editing may involve transient, inducible, or constitutive expression of the gene editing components or systems. Gene editing may involve genomic integration or episomal presence of the gene editing components or systems. Gene editing components or systems may be provided on vectors, such as plasmids, which may be delivered by appropriate delivery vehicles, as is known in the art. Preferred vectors are expression vectors.

[0063] Gene editing may comprise the provision of recombination templates, to effect homology directed repair (HDR). For instance, a genetic element may be replaced by gene editing in which a recombination template is provided. The DNA may be cut upstream and/or downstream of a sequence which needs to be replaced. As such, the sequence to be replaced is excised from the DNA. Through HDR, the excised sequence is then replaced by the template. In certain embodiments, the QTL allele of the invention as described herein may be provided on/as a template. By designing the system such that double strand breaks are introduced upstream and/or downstream of the corresponding region in the genome of a plant not comprising the QTL allele, this region is excised and can be replaced with the template comprising the QTL allele of the invention. In this way, introduction of the QTL allele of the invention in a plant need not involve multiple backcrossing, in particular in a plant of specific genetic background. Similarly, the mutated F35H of the invention may be provided on/as a template. More advantageously however, the mutated F35H of the invention may be generated without the use of a recombination template, but solely through the endonuclease action leading to a double strand DNA break which is repaired by NHEJ, resulting in the generation of indels.

[0064] In certain embodiments, the nucleic acid modification or mutation is effected by a (modified) transcription activator-like effector nuclease (TALEN) system. Transcription activator-like effectors (TALEs) can be engineered to bind practically any desired DNA sequence. Exemplary methods of genome editing using the TALEN system can be found for example in Cermak T. Doyle EL. Christian M. Wang L. Zhang Y. Schmidt C, et al. Efficient design and assembly of custom TALE and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res. 2011;39:e82; Zhang F. Cong L. Lodato S. Kosuri S. Church GM. Arlotta P Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. Nat Biotechnol. 2011;29:149-153 and US Patent Nos. 8,450,471, 8,440,431 and 8,440,432. By means of further guidance, and without limitation, naturally occurring TALEs or "wild type TALEs" are nucleic acid binding proteins secreted by numerous species of proteobacteria. TALE polypeptides contain a nucleic acid binding domain composed of tandem repeats of highly conserved monomer polypeptides that are predominantly 33, 34 or 35 amino acids in length and that differ from each other mainly in amino acid positions 12 and 13. In advantageous embodiments the nucleic acid is DNA. As used herein, the term "polypeptide monomers", or "TALE monomers" will be used to refer to the highly conserved repetitive polypeptide sequences within the TALE nucleic acid binding domain and the term "repeat variable di-residues" or "RVD" will be used to refer to the highly variable amino acids at positions 12 and 13 of the polypeptide monomers. As provided throughout the disclosure, the amino acid residues of the RVD are depicted using the IUPAC single letter code for amino acids. A general representation of a TALE monomer which is comprised within the DNA binding domain is X1-11-(X12X13)-X14-33 or 34 or 35, where the subscript indicates the amino acid position and X represents any amino acid. X12X13 indicate the RVDs. In some polypeptide monomers, the variable amino acid at position 13 is missing or absent and in such polypeptide monomers, the RVD consists of a single amino acid. In such cases the RVD may be alternatively represented as X", where X represents X12 and (*) indicates that X13 is absent. The DNA binding domain comprises several repeats of TALE monomers and this may be represented as (X1-11-(X12X13)-X14-33 or 34 or 35)z, where in an advantageous embodiment, z is at least 5 to 40. In a further advantageous embodiment, z is at least 10 to 26. The TALE monomers have a nucleotide binding affinity that is determined by the identity of the amino acids in its RVD. For example, polypeptide monomers with an RVD of NI preferentially bind to adenine (A), polypeptide monomers with an RVD of NG preferentially bind to thymine (T), polypeptide monomers with an RVD of HD preferentially bind to cytosine (C) and polypeptide monomers with an RVD of NN preferentially bind to both adenine (A) and guanine (G). In yet another embodiment of the invention, polypeptide monomers with an RVD of IG preferentially bind to T. Thus, the number and order of the polypeptide monomer repeats in the nucleic acid binding domain of a TALE determines its nucleic acid target specificity. In still further embodiments of the invention, polypeptide monomers with an RVD of NS recognize all four base pairs and may bind to A, T, G or C. The structure and function of TALEs is further described in, for example, Moscou et al., Science 326:1501 (2009); Boch et al., Science 326:1509-1512.
sufficient complementarity with a target nucleic acid sequence to hybridize with the target nucleic acid sequence and direct sequence-specific binding of a nucleic acid-targeting complex to the target nucleic acid sequence. In some embodiments, the degree of complementarity, when optimally aligned using a suitable alignment algorithm, is about or more than about 50%, 60%, 75%, 80%, 85%, 90%, 95%, 97.5%, 99%, or more. Optimal alignment may be determined with the use of any suitable algorithm for aligning sequences, nonlimiting example of which include the Smith-Waterman algorithm, the Needleman-Wunsch algorithm, algorithms based on the Burrows-Wheeler Transform (e.g., the Burrows Wheeler Aligner), ClustalW, Clustal X, BLAT, Novoalign (Novocraft Technologies; available at www.novocraft.com), ELAND (Illumina, San Diego, CA), SOAP (available at soap.genomics.org.cn), and Maq (available at maq.sourceforge.net). The ability of a guide sequence (within a nucleic acid-targeting guide RNA) to direct sequence-specific binding of a nucleic acid-targeting complex to a target nucleic acid sequence may be assessed by any suitable assay.

A guide sequence, and hence a nucleic acid-targeting guide RNA may be selected to target any target nucleic acid sequence. The target sequence may be DNA. The target sequence may be genomic DNA. The target sequence may be mitochondrial DNA. The target sequence may be any RNA sequence. In some embodiments, the target sequence may be a sequence within a RNA molecule selected from the group consisting of messenger RNA (mRNA), pre-mRNA, ribosomal RNA (rRNA), transfer RNA (tRNA), micro-RNA (miRNA), small interfering RNA (siRNA), small nuclear RNA (snRNA), small nucleolar RNA (snoRNA), double stranded RNA (dsRNA), non-coding RNA (ncRNA), and small cytoplasmatic RNA (scRNA). In some embodiments, the target sequence may be a sequence within a molecule selected from the group consisting of mRNA, pre-mRNA, and RNA. In some preferred embodiments, the target sequence may be a sequence within a RNA molecule selected from the group consisting of ncRNA, and IncRNA. In some more preferred embodiments, the target sequence may be a sequence within an mRNA molecule or a pre-mRNA molecule.

In certain embodiments, the gRNA comprises a stem loop, preferably a single stem loop. In certain embodiments, the direct repeat sequence forms a stem loop, preferably a single stem loop. In certain embodiments, the spacer length of the guide RNA is from 15 to 35 nt. In certain embodiments, the spacer length of the guide RNA is at least 15 nucleotides. In certain embodiments, the spacer length is from 15 to 17 nt, e.g., 15, 16, or 17 nt, from 17 to 20 nt, e.g., 17, 18, 19, or 20 nt, from 20 to 24 nt, e.g., 20, 21, 22, 23, or 24 nt, from 23 to 25 nt, e.g., 23, 24, or 25 nt, from 24 to 27 nt, e.g., 24, 25, 26, or 27 nt, from 27-30 nt, e.g., 27, 28, 29, or 30 nt, from 30-35 nt, e.g., 30, 31, 32, 33, 34, or 35 nt, or 35 nt or longer. In particular embodiments, the CRISPR/Cas system requires a tracrRNA. The “tracrRNA” sequence or analogous terms includes any polynucleotide sequence that has sufficient complementarity with a crRNA sequence to hybridize. In some embodiments, the degree of complementarity between the tracrRNA sequence and crRNA sequence along the length of the shorter of the two when optimally aligned is about or more than about 25%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 97.5%, 99%, or higher. In some embodiments, the tracr sequence is about or more than about 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 40, 50, or more nucleotides in length. In some embodiments, the tracr sequence and gRNA sequence are contained within a single transcript, such that hybridization between the two produces a transcript having a secondary structure, such as a hairpin. In an embodiment of the invention, the transcript or transcribed polynucleotide sequence has at least two or more hairpins. In preferred embodiments, the transcript has two, three, four or five hairpins. In a further embodiment of the invention, the transcript has at most five hairpins. In a hairpin structure the portion of the sequence 5’ of the final “N” and upstream of the loop may correspond to the tracr mate sequence, and the portion of the sequence 3’ of the loop then corresponds to the tracr sequence. In a hairpin structure the portion of the sequence 5’ of the final “N” and upstream of the loop may alternatively correspond to the tracr sequence, and the portion of the sequence 3’ of the loop corresponds to the tracr mate sequence. In alternative embodiments, the CRISPR/Cas system does not require a tracrRNA, as is known by the skilled person.

In certain embodiments, the guide RNA (capable of guiding Cas to a target locus) may comprise (1) a guide sequence capable of hybridizing to a target locus and (2) a tracr mate or direct repeat sequence (in 5’ to 3’ orientation, or alternatively in 3’ to 5’ orientation, depending on the type of Cas protein, as is known by the skilled person). In particular embodiments, the CRISPR/Cas protein is characterized in that it makes use of a guide RNA comprising a guide sequence capable of hybridizing to a target locus and a direct repeat sequence, and does not require a tracrRNA. In particular embodiments, where the CRISPR/Cas protein is characterized in that it makes use of a tracrRNA, the guide sequence, tracr mate, and tracr sequence may reside in a single RNA, i.e., an sgRNA (arranged in a 5’ to 3’ orientation or alternatively arranged in a 3’ to 5’ orientation), or the tracr RNA may be a different RNA than the RNA containing the guide and tracr mate sequence. In these embodiments, the tracr hybridizes to the tracr mate sequence and directs the CRISPR/Cas complex to the target sequence.

Typically, in the context of an endogenous nucleic acid-targeting system, formation of a nucleic acid-targeting complex (comprising a guide RNA hybridized to a target sequence and complexed with one or more nucleic acid-targeting effector proteins) results in modification (such as cleavage) of one or both DNA or RNA strands in or near (e.g., within 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 50, or more base pairs from) the target sequence. As used herein the term "sequence(s) associated with a target locus of interest" refers to sequences near the vicinity of the target sequence (e.g., within 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 50, or more base pairs from the target sequence, wherein the target sequence is comprised
within a target locus of interest). The skilled person will be aware of specific cut sites for selected CRISPR/Cas systems, relative to the target sequence, which as is known in the art may be within the target sequence or alternatively 3' or 5' of the target sequence.

In some embodiments, the unmodified nucleic acid-targeting effector protein may have nucleic acid cleavage activity. In some embodiments, the nuclease as described herein may direct cleavage of one or both nucleic acid (DNA, RNA, or hybrids, which may be single or double stranded) strands at the location of or near a target sequence, such as within the target sequence and/or within the complement of the target sequence or at sequences associated with the target sequence. In some embodiments, the nucleic acid-targeting effector protein may direct cleavage of one or both DNA or RNA strands within about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 50, 100, 200, 500, or more base pairs from the first or last nucleotide of a target sequence. In some embodiments, the cleavage may be blunt (e.g. for Cas9, such as SaCas9 or SpCas9). In some embodiments, the cleavage may be staggered (e.g. for Cpf1), i.e. generating sticky ends. In some embodiments, the cleavage is a staggered cut with a 5' overhang. In some embodiments, the cleavage is a staggered cut with a 5' overhang of 1 to 5 nucleotides, preferably of 4 or 5 nucleotides. In some embodiments, the cleavage site is upstream of the PAM. In some embodiments, the cleavage site is downstream of the PAM. In some embodiments, the nucleic acid-targeting effector protein that may be mutated with respect to a corresponding wild-type enzyme such that the mutated nucleic acid-targeting effector protein lacks the ability to cleave one or both DNA or RNA strands of a target polynucleotide containing a target sequence. As a further example, two or more catalytic domains of a Cas protein (e.g. RuvC I, RuvC II, and RuvC III or the HNH domain of a Cas9 protein) may be mutated to produce a mutated Cas protein substantially lacking all DNA cleavage activity. In some embodiments, a nucleic acid-targeting effector protein may be considered to substantially lack all DNA and/or RNA cleavage activity when the cleavage activity of the mutated enzyme is about no more than 25%, 10%, 5%, 1%, 0.1%, 0.01%, or less of the nucleic acid cleavage activity of the non-mutated form of the enzyme; an example can be when the nucleic acid cleavage activity of the mutated form is nil or negligible as compared with the non-mutated form. As used herein, the term "modified" Cas generally refers to a Cas protein having one or more modifications or mutations (including point mutations, truncations, insertions, deletions, chimeras, fusion proteins, etc.) compared to the wild type Cas protein from which it is derived. By derived is meant that the derived enzyme is largely based, in the sense of having a high degree of sequence homology with, a wildtype enzyme, but that it has been mutated (modified) in some way as known in the art or as described herein.

In a particular embodiment, a mutated nucleic acid-targeting effector protein based on CRISPR system as described above which lacks the ability to cleave one or both DNA or RNA strands of a target polynucleotide containing a target sequence can be fused to other tools like other nuclease, nickases, recombinases, transposases, base editors or molecular complexes including these tools. A "base editor" as used herein refers to a protein or a fragment thereof having the same catalytic activity as the protein it is derived from, which protein or fragment thereof, alone or when provided as molecular complex, referred to as base editing complex herein, has the capacity to mediate a targeted base modification, i.e., the conversion of a base of interest resulting in a point mutation of interest. Preferably, the at least one base editor in the context of the present invention is temporarily or permanently linked to at least one site-specific effector, or optionally to a component of at least one site-specific effector complex (e.g., DNA recognition domain of CRISPR system, zinc finger or TAL effectors). The linkage can be covalent and/or non-covalent.

Multiple publications have shown targeted base conversion, primarily cytidine (C) to thymine (T), using a CRISPR/Cas9 nickase or non-functional nuclease linked to a cytidine deaminase domain, Apolipoprotein B mRNA-editing catalytic polypeptide (APOBEC1), e.g., APOBEC derived from rat. The deamination of cytosine (C) is catalysed by cytidine deaminases and results in uracil (U), which has the base-pairing properties of thymine (T). Most known cytidine deaminases operate on RNA, and the few examples that are known to accept DNA require single-stranded (ss) DNA. Studies on the dCas9-target DNA complex reveal that at least nine nucleotides (nt) of the displaced DNA strand are unpaired upon formation of the Cas9-guide RNA-DNA 'R-loop' complex (Jore et al., Nat. Struct. Mol. Biol., 18, 529-536 (2011)). Indeed, in the structure of the Cas9 R-loop complex, the first 11 nt of the protospeacer on the displaced DNA strand are disordered, suggesting that their movement is not highly restricted. It has also been speculated that Cas9 nickase-induced mutations at cytosines in the non-template strand might arise from their accessibility by cellular cytosine deaminase enzymes. It was reasoned that a subset of this stretch of ssDNA in the R-loop might serve as an efficient substrate for a dCas9-tethered cytidine deaminase to effect direct, programmable conversion of C to U in DNA (Komor et al., supra). Recently, Goudelli et al ((2017). Programmable base editing of A+ T to G+ C in genomic DNA without DNA cleavage. Nature, 551(7681), 464.) described adenine base editors (ABEs) that mediate the conversion of A+T to G+C in genomic DNA.

Any base editing complex according to the present invention can thus comprise at least one cytidine deaminase, or a catalytically active fragment thereof. The at least one base editing complex can comprise the cytidine deaminase, or a domain thereof in the form of a catalytically active fragment, as base editor.

In another embodiment, the at least one first targeted base modification is a conversion of any nucleotide C, A, T, or G, to any other nucleotide. Any one of a C, A, T or G nucleotide can be exchanged in a site-directed way as mediated by a base editor, or a catalytically active fragment thereof, to another nucleotide. The at least one base editing
In certain embodiments, the target sequence for CRISPR/Cas should be associated with a PAM (protospacer adjacent motif) or PFS (protospacer flanking sequence or site); that is, a short sequence recognized by the CRISPR complex. The precise sequence and length requirements for the PAM differ depending on the CRISPR enzyme used, but PAMs are typically 2-5 base pair sequences adjacent the protospacer (that is, the target sequence). Examples of PAM sequences are given in the examples section below, and the skilled person will be able to identify further PAM sequences for use with a given CRISPR enzyme. Further, engineering of the PAM Interacting (PI) domain may allow programming of PAM specificity, improve target site recognition fidelity, and increase the versatility of the Cas, e.g. Cas9, genome engineering platform. Cas proteins, such as Cas9 proteins may be engineered to alter their PAM specificity, for example as described in Kleinstiver BP et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature. 2015 Jul 23;523(7561):481-5. doi: 10.1038/nature14592. In some embodiments, the method comprises allowing a CRISPR complex to bind to the target polynucleotide to effect cleavage of said target polynucleotide thereby modifying the target polynucleotide, wherein the CRISPR complex comprises a CRISPR enzyme complexed with a guide sequence hybridized to a target sequence within said target polynucleotide, wherein said guide sequence is linked to a tracr mate sequence which in turn hybridizes to a tracr sequence. The skilled person will understand that other Cas proteins may be modified analogously.

The Cas protein as referred to herein, such as without limitation Cas9, Cpf1 (Cas12a), C2c1 (Cas12b), C2c2 (Cas13a), C2c3, Cas13b protein, may originate from any suitable source, and hence may include different orthologues, originating from a variety of (prokaryotic) organisms, as is well documented in the art. In certain embodiments, the Cas protein is (modified) Cas9, preferably (modified) Staphylococcus aureus Cas9 (SaCas9) or (modified) Streptococcus pyogenes Cas9 (SpCas9). In certain embodiments, the Cas protein is (modified) Cpf1, preferably Acidaminococcus sp., such as Acidaminococcus sp. BV3L6 Cpf1 (AsCpf1) or Lachnospiraceae bacterium Cpf1, such as Lachnospiraceae bacterium MA2020 or Lachnospiraceae bacterium MD2006 (LbCpf1). In certain embodiments, the Cas protein is (modified) C2c2, preferably Leptotrichia wadei C2c2 (LwC2c2) or Listeria newyorkensis FSL M6-0635 C2c2 (LbFSLC2c2). In certain embodiments, the (modified) Cas protein is C2c1. In certain embodiments, the (modified) Cas protein is C2c3. In certain embodiments, the (modified) Cas protein is Cas13b.

In certain embodiments, the nucleic acid modification is effected by random mutagenesis. Cells or organisms may be exposed to mutagens such as UV radiation or mutagenic chemicals (such as for instance such as ethyl methanesulfonate (EMS)), and mutants with desired characteristics are then selected. Mutants can for instance be identified by TILLING (Targeting Induced Local Lesions in Genomes). The method combines mutagenesis, such as mutagenesis using a chemical mutagen such as ethyl methanesulfonate (EMS) with a sensitive DNA screening-technique that identifies single base mutations/point mutations in a target gene. The TILLING method relies on the formation of DNA heteroduplexes that are formed when multiple alleles are amplified by PCR and are then heated and slowly cooled. A "bubble" forms at the mismatch of the two DNA strands, which is then cleaved by a single stranded nucleases. The products are then separated by size, such as by HPLC. See also McCallum et al. "Targeted screening for induced mutations"; Nat Biotechnol. 2000 Apr;18(4):455-7 and McCallum et al. "Targeting induced local lesions IN genomes (TILLING) for plant functional genomics"; Plant Physiol. 2000 Jun;123(2):439-42.

RNA interference (RNAi) is a biological process in which RNA molecules inhibit gene expression or translation, by neutralizing targeted mRNA molecules. Two types of small ribonucleic acid (RNA) molecules - microRNA (miRNA) and small interfering RNA (siRNA) - are central to RNA interference. RNAs are the direct products of genes, and these small RNAs can bind to other specific messenger RNA (mRNA) molecules and either increase or decrease their activity, for example by preventing an mRNA from being translated into a protein. The RNAi pathway is found in many eukaryotes, including animals, and is initiated by the enzyme Dicer, which cleaves long double-stranded RNA (dsRNA) molecules into short double-stranded fragments of about 21 nucleotide siRNAs (small interfering RNAs). Each siRNA is unwound into two single-stranded RNAs (ssRNAs), the passenger strand and the guide strand. The passenger strand is degraded and the guide strand is incorporated into the RNA-induced silencing complex (RISC). Mature miRNAs are structurally similar to siRNAs produced from exogenous dsRNA, but before reaching maturity, miRNAs must first undergo extensive post-transcriptional modification. A miRNA is expressed from a much longer RNA-coding gene as a primary transcript known as a pri-miRNA which is processed, in the cell nucleus, to a 70-nucleotide stem-loop structure called a pre-miRNA by the microprocessor complex. This complex consists of an Rnase III enzyme called Drosha and a dsRNA-binding protein DGC8. The dsRNA portion of this pre-miRNA is bound and cleaved by Dicer to produce the mature miRNA molecule that can be incorporated into the RISC complex; thus, miRNA and siRNA share the same downstream cellular machinery. A short hairpin RNA or small hairpin RNA (shRNA/Hairpin Vector) is an artificial RNA molecule with a tight hairpin turn that can be used to silence target gene expression via RNA interference. The most well-studied outcome is post-transcriptional gene silencing, which occurs when the guide strand pairs with a complementary sequence in a messenger RNA molecule and induces cleavage by Argonaute 2 (Ago2), the catalytic component of the RISC. As used herein, an RNAi molecule may be an siRNA, shRNA, or a miRNA. In will be understood that the RNAi molecules can
be applied as such to/in the plant, or can be encoded by appropriate vectors, from which the RNAi molecule is expressed. Delivery and expression systems of RNAi molecules, such as siRNAs, shRNAs or miRNAs are well known in the art.

[0085] As used herein, the term "homozygote" refers to an individual cell or plant having the same alleles at one or more or all loci. When the term is used with reference to a specific locus or gene, it means at least that locus or gene has the same alleles. As used herein, the term "homozygous" means a genetic condition existing when identical alleles reside at corresponding loci on homologous chromosomes. As used herein, the term "heterozygote" refers to an individual cell or plant having different alleles at one or more or all loci. When the term is used with reference to a specific locus or gene, it means at least that locus or gene has different alleles. As used herein, the term "heterozygous" means a genetic condition existing when different alleles reside at corresponding loci on homologous chromosomes. In certain embodiments, the QTL and/or one or more marker(s) as described herein is/are homozygous. In certain embodiments, the QTL and/or one or more marker(s) as described herein are heterozygous. In certain embodiments, the QTL allele and/or one or more marker(s) allele(s) as described herein is/are homozygous. In certain embodiments, the QTL allele and/or one or more marker(s) allele(s) as described herein are heterozygous.

[0086] A "marker" is a (means of finding a position on a) genetic or physical map, or else linkages among markers and trait loci (loci affecting traits). The position that the marker detects may be known via detection of polymorphic alleles and their genetic mapping, or else by hybridization, sequence match or amplification of a sequence that has been physically mapped. A marker can be a DNA marker (detects DNA polymorphisms), a protein (detects variation at an encoded polypeptide), or a simply inherited phenotype (such as the 'waxy' phenotype). A DNA marker can be developed from genomic nucleotide sequence or from expressed nucleotide sequences (e.g., from a spliced RNA or a cDNA). Depending on the DNA marker technology, the marker may consist of complementary primers flanking the locus and/or complementary probes that hybridize to polymorphic alleles at the locus. The term marker locus is the locus (gene, sequence or nucleotide) that the marker detects. "Marker" or "molecular marker" or "marker locus" may also be used to denote a nucleic acid or amino acid sequence that is sufficiently unique to characterize a specific locus on the genome. Any detectable polymorphic trait can be used as a marker so long as it is inherited differentially and exhibits linkage disequilibrium with a phenotypic trait of interest.

[0087] Markers that detect genetic polymorphisms between members of a population are well-established in the art. Markers can be defined by the type of polymorphism that they detect and also the marker technology used to detect the polymorphism. Marker types include but are not limited to, e.g., detection of restriction fragment length polymorphisms (RFLP), detection of isozyme markers, randomly amplified polymorphic DNA (RAPD), amplified fragment length polymorphisms (AFLPs), detection of simple sequence repeats (SSRs), detection of amplified variable sequences of the plant genome, detection of self-sustained sequence replication, or detection of single nucleotide polymorphisms (SNPs). SNPs can be detected e.g. via DNA sequencing, PCR-based sequence specific amplification methods, detection of polymorphic DNA polymorphisms by allele specific hybridization (ASH), dynamic allele-specific hybridization (DASH), molecular beacons, microarray hybridization, oligonucleotide ligase assays, Flap endonucleases, 5' endonucleases, primer extension, single strand conformation polymorphism (SSCP) or temperature gradient gel electrophoresis (TGGE). DNA sequencing, such as the pyrosequencing technology has the advantage of being able to detect a series of linked SNP alleles that constitute a haplotype. Haplotype types tend to be more informative (detect a higher level of polymorphism) than SNPs.

[0088] A "marker allele", alternatively an "allele of a marker locus", can refer to one of a plurality of polymorphic nucleotide sequences found at a marker locus in a population. With regard to a SNP marker, allele refers to the specific nucleotide base present at that SNP locus in that individual plant.

[0089] "Fine-mapping" refers to methods by which the position of a QTL can be determined more accurately (narrowed down) and by which the size of the introgression fragment comprising the QTL is reduced. For example Near Isogenic Lines for the QTL (QTL-NILs) can be made, which contain different, overlapping fragments of the introgression fragment within an otherwise uniform genetic background of the recurrent parent. Such lines can then be used to map on which fragment the QTL is located and to identify a line having a shorter introgression fragment comprising the QTL.

[0090] "Marker assisted selection" (of MAS) is a process by which individual plants are selected based on marker genotypes. "Marker assisted counter-selection" is a process by which marker genotypes are used to identify plants that will not be selected, allowing them to be removed from a breeding program or planting. Marker assisted selection uses the presence of molecular markers, which are genetically linked to a particular locus or to a particular chromosome region (e.g. introgression fragment, transgene, polymorphism, mutation, etc), to select plants for the presence of the specific locus or region (introgression fragment, transgene, polymorphism, mutation, etc). For example, a molecular marker genetically linked to a digestibility QTL as defined herein, can be used to detect and/or select plants comprising the QTL on chromosome 9. The closer the genetic linkage of the molecular marker to the locus (e.g. about 7 cM, 6 cM, 5 cM, 4 cM, 3 cM, 2 cM, 1 cM, 0.5 cM or less), the less likely it is that the marker is dissociated from the locus through meiotic recombination. Likewise, the closer two markers are linked to each other (e.g. within 7 cM or 5 cM, 4 cM, 3 cM, 2 cM, 1 cM or less) the less likely it is that the two markers will be separated from one another (and the more likely they will co-segregate as a unit). "LOD-score" (logarithm (base 10) of odds) refers to a statistical test often used for linkage
analysis in animal and plant populations. The LOD score compares the likelihood of obtaining the test data if the two loci (molecular marker loci and/or a phenotypic trait locus) are indeed linked, to the likelihood of observing the same data purely by chance. Positive LOD scores favor the presence of linkage and a LOD score greater than 3.0 is considered evidence for linkage. A LOD score of +3 indicates 1000 to 1 odds that the linkage being observed did not occur by chance.

[0091] A "marker haplotype" refers to a combination of alleles at a marker locus.

[0092] A "marker locus" is a specific chromosome location in the genome of a species where a specific marker can be found. A marker locus can be used to track the presence of a second linked locus, e.g., one that affects the expression of a phenotypic trait. For example, a marker locus can be used to monitor segregation of alleles at a genetically or physically linked locus.

[0093] A "marker probe" is a nucleic acid sequence or molecule that can be used to identify the presence of a marker locus, e.g., a nucleic acid probe that is complementary to a marker locus sequence, through nucleic acid hybridization. Marker probes comprising 30 or more contiguous nucleotides of the marker locus ("all or a portion" of the marker locus sequence) may be used for nucleic acid hybridization. Alternatively, in some aspects, a marker probe refers to a probe of any type that is able to distinguish (i.e., genotype) the particular allele that is present at a marker locus.

[0094] The term "molecular marker" may be used to refer to a genetic marker or an encoded product thereof (e.g., a protein) used as a point of reference when identifying a linked locus. A marker can be derived from genomic nucleotide sequences or from expressed nucleotide sequences (e.g., from a spliced RNA, a cDNA, etc.), or from an encoded polypeptide. The term also refers to nucleic acid sequences complementary to or flanking the marker sequences, such as nucleic acids used as probes or primer pairs capable of amplifying the marker sequence. A "molecular marker probe" is a nucleic acid sequence or molecule that can be used to identify the presence of a marker locus, e.g., a nucleic acid probe that is complementary to a marker locus sequence. Alternatively, in some aspects, a marker probe refers to a probe of any type that is able to distinguish (i.e., genotype) the particular allele that is present at a marker locus. Nucleic acids are "complementary" when they specifically hybridize in solution, e.g., according to Watson-Crick base pairing rules. Some of the markers described herein are also referred to as hybridization markers when located on an indel region, such as the non-collinear region described herein. This is because the insertion region is, by definition, a polymorphism vis a vis a plant without the insertion. Thus, the marker need only indicate whether the indel region is present or absent. Any suitable marker detection technology may be used to identify such a hybridization marker, e.g., SNP technology is used in the examples provided herein.

[0095] "Genetic markers" are nucleic acids that are polymorphic in a population and where the alleles of which can be detected and distinguished by one or more analytic methods, e.g., RFLP, AFLP, isozyme, SNP, SSR, and the like. The terms "molecular marker" and "genetic marker" are used interchangeably herein. The term also refers to nucleic acid sequences complementary to the genomic sequences, such as nucleic acids used as probes. Markers corresponding to genetic polymorphisms between members of a population can be detected by methods well-established in the art. These include, e.g., PCR-based sequence specific amplification methods, detection of restriction fragment length polymorphisms (RFLP), detection of isozyme markers, detection of polynucleotide polymorphisms by allele specific hybridization (ASH), detection of amplified variable sequences of the plant genome, detection of self-sustained sequence repllication, detection of simple sequence repeats (SSRs), detection of single nucleotide polymorphisms (SNPs), or detection of amplified fragment length polymorphisms (AFLPs). Well established methods are also known for the detection of expressed sequence tags (ESTs) and SSR markers derived from EST sequences and randomly amplified polymorphic DNA (RAPD).

[0096] A "polymorphism" is a variation in the DNA between two or more individuals within a population. A polymorphism preferably has a frequency of at least 1 % in a population. A useful polymorphism can include a single nucleotide polymorphism (SNP), a simple sequence repeat (SSR), or an insertion/deletion polymorphism, also referred to herein as an "indel". The term "indel" refers to an insertion or deletion, wherein one line may be referred to as having an inserted nucleotide or piece of DNA relative to a second line, or the second line may be referred to as having a deleted nucleotide or piece of DNA relative to the first line.

[0097] "Physical distance" between loci (e.g., between molecular markers and/or between phenotypic markers) on the same chromosome is the actually physical distance expressed in bases or base pairs (bp), kilo bases or kilo base pairs (kb) or megabases or mega base pairs (Mb).

[0098] "Genetic distance" between loci (e.g., between molecular markers and/or between phenotypic markers) on the same chromosome is measured by frequency of crossing-over, or recombination frequency (RF) and is indicated in centimorgans (cM). One cM corresponds to a recombination frequency of 1%. If no recombinants can be found, the RF is zero and the loci are either extremely close together physically or they are identical. The further apart two loci are, the higher the RF.

[0099] A "physical map" of the genome is a map showing the linear order of identifiable landmarks (including genes, markers, etc.) on chromosome DNA. However, in contrast to genetic maps, the distances between landmarks are absolute (for example, measured in base pairs or isolated and overlapping contiguous genetic fragments) and not based on genetic recombination (that can vary in different populations).
An allele "negatively" correlates with a trait when it is linked to it and when presence of the allele is an indicator that a desired trait or trait form will not occur in a plant comprising the allele. An allele "positively" correlates with a trait when it is linked to it and when presence of the allele is an indicator that the desired trait or trait form will occur in a plant comprising the allele.

A centimorgan ("cM") is a unit of measure of recombination frequency. One cM is equal to a 1% chance that a marker at one genetic locus will be separated from a marker at a second locus due to crossing over in a single generation.

As used herein, the term "chromosomal interval" designates a contiguous linear span of genomic DNA that resides in planta on a single chromosome. The genetic elements or genes located on a single chromosomal interval are physically linked. The size of a chromosomal interval is not particularly limited. In some aspects, the genetic elements located within a single chromosomal interval are genetically linked, typically with a genetic recombination distance of, for example, less than or equal to 20 cM, or alternatively, less than or equal to 10 cM. That is, two genetic elements within a single chromosomal interval undergo recombination at a frequency of less than or equal to 20% or 10%.

The term "closely linked", in the present application, means that recombination between two linked loci occurs with a frequency of equal to or less than about 10% (i.e., are separated on a genetic map by not more than 10 cM). Put another way, the closely linked loci co-segregate at least 90% of the time. Marker loci are especially useful with respect to the subject matter of the current disclosure when they demonstrate a significant probability of co-segregation (linkage) with a desired trait (e.g., resistance to gray leaf spot). Closely linked loci such as a marker locus and a second locus can display an inter-locus recombination frequency of 10% or less, preferably about 9% or less, still more preferably about 8% or less, yet more preferably about 7% or less, still more preferably about 6% or less, yet more preferably about 5% or less, still more preferably about 4% or less, yet more preferably about 3% or less, and still more preferably about 2% or less. In highly preferred embodiments, the relevant loci display a recombination frequency of about 1% or less, e.g., about 0.75% or less, more preferably about 0.5% or less, or yet more preferably about 0.25% or less. Two loci that are localized to the same chromosome, and at such a distance that recombination between the two loci occurs at a frequency of less than 10% (e.g., about 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.75%, 0.5%, 0.25%, or less) are also said to be "proximal to" each other. In some cases, two different markers can have the same genetic map coordinates. In that case, the two markers are in such close proximity to each other that recombination occurs between them with such low frequency that it is undetectable.

"Linkage" refers to the tendency for alleles to segregate together more often than expected by chance if their transmission was independent. Typically, linkage refers to alleles on the same chromosome. Genetic recombination occurs with an assumed random frequency over the entire genome. Genetic maps are constructed by measuring the frequency of recombination between pairs of traits or markers. The closer the traits or markers are to each other on the chromosome, the lower the frequency of recombination, and the greater the degree of linkage. Traits or markers are considered herein to be linked if they generally co-segregate. A 1/100 probability of recombination per generation is defined as a genetic map distance of 1.0 centiMorgan (1.0 cM). The term "linkage disequilibrium" refers to a non-random segregation of genetic loci or traits (or both). In either case, linkage disequilibrium implies that the relevant loci are within sufficient physical proximity along a length of a chromosome so that they segregate together with greater than random (i.e., non-random) frequency. Markers that show linkage disequilibrium are considered linked. Linked loci co-segregate more than 50% of the time, e.g., from about 51% to about 100% of the time. In other words, two markers that co-segregate have a recombination frequency of less than 50% (and by definition, are separated by less than 50 cM on the same linkage group.) As used herein, linkage can be between two markers, or alternatively between a marker and a locus affecting a phenotype. A marker locus can be "associated with" (linked to) a trait. The degree of linkage of a marker locus and a locus affecting a phenotypic trait is measured, e.g., as a statistical probability of co-segregation of that molecular marker with the phenotype (e.g., an F statistic or LOD score).

As used herein, the term "sequence identity" refers to the degree of identity between any given nucleic acid sequence and a target nucleic acid sequence. Percent sequence identity is calculated by determining the number of matched positions in aligned nucleic acid sequences, dividing the number of matched positions by the total number of aligned nucleotides, and multiplying by 100. A matched position refers to a position in which identical nucleotides occur at the same position in aligned nucleic acid sequences. Percent sequence identity also can be determined for any amino acid sequence. To determine percent sequence identity, a target nucleic acid or amino acid sequence is compared to the identified nucleic acid or amino acid sequence using the BLAST 2 Sequences (BL2seq) program from the stand-alone version of BLASTZ containing BLASTN and BLASTP. This stand-alone version of BLASTZ can be obtained from Fish & Richardson's web site (World Wide Web at fr.com/blast) or the U.S. government's National Center for Biotechnology Information web site (World Wide Web at ncbi.nlm.nih.gov). Instructions explaining how to use the BL2seq program can be found in the readme file accompanying BLASTZ. BL2seq performs a comparison between two sequences using either the BLASTN or BLASTP algorithm.

BLASTN is used to compare nucleic acid sequences, while BLASTP is used to compare amino acid sequences. To compare two nucleic acid sequences, the options are set as follows: -i is set to a file containing the first nucleic acid sequence to be compared (e.g., C:\seq 1.txt); -j is set to a file containing the second nucleic acid sequence to be compared.
An "isolated nucleic acid sequence" or "isolated DNA" refers to a nucleic acid sequence which is no longer in the natural environment from which it was isolated, e.g. the nucleic acid sequence in a bacterial host cell or in the plant nuclear or plastid genome. When referring to a "sequence" herein, it is understood that the molecule having such a sequence is referred to, e.g. the nucleic acid molecule. A "host cell" or a "recombinant host cell" or "transformed cell" are terms referring to a new individual cell (or organism) arising as a result of at least one nucleic acid molecule, having been introduced into said cell. The host cell is preferably a plant cell or a bacterial cell. The host cell may contain the nucleic acid as an extra-chromosomally (episomal) replicating molecule, or comprises the nucleic acid integrated in the nuclear or plastid genome of the host cell, or as introduced chromosome, e.g. minichromosome.

When reference is made to a nucleic acid sequence (e.g. DNA or genomic DNA) having "substantial sequence identity" to a reference sequence or having a sequence identity of at least 60%, e.g. at least 70%, 75%, 80%, 85%, 90%, 95%, 98% or 99% nucleic acid sequence identity to a reference sequence, in one embodiment said nucleotide sequence is considered substantially identical to the given nucleotide sequence and can be identified using stringent hybridisation conditions. In another embodiment, the nucleic acid sequence comprises one or more mutations compared to the given nucleotide sequence but still can be identified using stringent hybridisation conditions. "Stringent hybridisation conditions" can be used to identify nucleotide sequences, which are substantially identical to a given nucleotide sequence. Stringent conditions are sequence dependent and will be different in different circumstances. Generally, stringent conditions are selected to be about 5°C lower than the thermal melting point (Tm) for the specific sequences at a defined ionic strength and pH. The Tm is the temperature (under defined ionic strength and pH) at which 50% of the target sequence hybridises to a perfectly matched probe. Typically, stringent conditions will be chosen in which the salt concentration is about 0.02 molar at pH 7 and the temperature is at least 60°C. Lowering the salt concentration and/or increasing the temperature increases stringency. Stringent conditions for RNA-DNA hybridisations (Northern blots using a probe of e.g. 100 nt) are for example those which include at least one wash in 0.2X SSC at 63°C for 20min, or equivalent conditions. Stringent conditions for DNA-DNA hybridisation (Southern blots using a probe of e.g. 100 nt) are for example those which include at least one wash in 0.2X SSC at a temperature of at least 50°C, usually about 55°C, for 20 min, or equivalent conditions. See also Sambrook et al. (1989) and Sambrook and Russell (2001). Examples of high stringent hybridisation conditions are conditions which include at least one wash in 0.2X SSC at 63°C for 20min, or equivalent conditions. Stringent hybridization conditions are conditions under which primarily only those nucleic acid molecules that have at least 90% or at least 95% sequence identity undergo hybridization. Such high stringent hybridization conditions are, for example: 4 x SSC at 65°C and subsequent multiple washes in 0.1 x SSC at 65°C for approximately 1 hour. The term "high stringent hybridization conditions" as used herein may also mean: hybridization at 68°C in 0.25 M sodium phosphate, pH 7.2, 7 % SDS, 1 mM EDTA and 1 % BSA for 16 hours and subsequently washing twice with 2 x SSC and 0.1 % SDS at 68°C. Preferably, hybridization takes place under stringent conditions. Less stringent hybridization conditions are, for example: hybridizing in 4 x SSC at 37 °C and subsequent multiple washing in 1 x SSC at room temperature.

As used herein, F35H (ExPASy enzyme entry EC 1.14.13.88) refers to the flavonoid 3',5'-hydroxylase gene or protein. F35H is also known as F3'5'H, F3',5'H, cytochrome P450 flavonoid 3',5'-hydroxylase, or flavanone,NADPH:oxygen oxidoreductase. F35H catalyzes the following reaction: flavanone + 2 NADPH + 2 O(2) => 3',5'-dihydroxyflavanone + 2 NADP(+)+2 H(2)O.
In an embodiment, the invention relates to a method for identifying a maize plant or plant part from maize having improved digestibility, preferably improved stover digestibility, or for selecting a plant or plant part having improved digestibility, preferably improved stover digestibility, comprising screening for the presence of a QTL allele (such as in isolated genetic material from the plant or plant part) associated with improved digestibility, preferably improved stover digestibility, said QTL allele comprising a nucleotide sequence of a gene encoding a cytochrome P450 flavonoid 3',5'-hydroxylase (F35H), having a mutation leading to reduced or absent expression of the mRNA of the gene and/or the F35H protein (such as a knock-down or knock-out mutation), or a mutation leading to a non-functional F35H protein (e.g., truncated F35H protein) or an F35H protein having reduced enzymatic activity upon translation; wherein improved digestibility relates to increased digestibility of the maize plant or plant part from maize having the characteristic of a), b) or c) compared to a maize plant or plant part from maize not having such characteristic; and wherein the unmutated F35H is selected from the group consisting of:

(i) a nucleotide sequence comprising the sequence of SEQ ID NO: 1;
(ii) a nucleotide sequence having the cDNA of SEQ ID NO: 2;
(iii) a nucleotide sequence encoding for an amino acid sequence having the amino acid sequence of SEQ ID NO: 3;
(iv) a nucleotide sequence having at least 80% identity to the sequence of SEQ ID NO: 1, or 2;
(v) a nucleotide sequence encoding for a polypeptide having at least 80% identity to the sequence of SEQ ID NO: 3;
(vi) a nucleotide sequence hybridizing with the reverse complement of a nucleotide sequence as defined in (i), (ii) or (iii) under stringent hybridization conditions.

In an embodiment, the invention relates to a method for identifying a maize plant or plant part from maize having improved digestibility, preferably improved stover digestibility, or for selecting a plant or plant part having improved digestibility, preferably improved stover digestibility, comprising screening for the presence of a QTL allele (such as in isolated genetic material from the plant or plant part) associated with improved digestibility, preferably improved stover digestibility, said QTL allele comprising a nucleotide sequence of a gene encoding a cytochrome P450 flavonoid 3',5'-hydroxylase (F35H), having a mutation leading to reduced or absent expression of the mRNA of the gene and/or the F35H protein (such as a knock-down or knock-out mutation), or a mutation leading to a non-functional F35H protein (e.g., truncated F35H protein) or an F35H protein having reduced enzymatic activity upon translation.

In an embodiment, the invention relates to a method for identifying a maize plant or plant part from maize having improved digestibility, preferably improved stover digestibility, or for selecting a plant or plant part having improved digestibility, preferably improved stover digestibility, comprising screening for the presence of a QTL allele (such as in isolated genetic material from the plant or plant part) associated with improved digestibility, preferably improved stover digestibility, said QTL allele comprising a nucleotide sequence of a gene encoding a cytochrome P450 flavonoid 3',5'-hydroxylase (F35H), having a mutation leading to reduced or absent expression of the mRNA of the gene and/or the F35H protein (such as a knock-down or knock-out mutation), or a mutation leading to a non-functional F35H protein (e.g., truncated F35H protein) or an F35H protein having reduced enzymatic activity upon translation, and selecting a maize plant or plant part from maize in which the QTL allele is present.

In an embodiment, the invention relates to a method for identifying a maize plant or plant part from maize having improved digestibility, preferably improved stover digestibility, or for selecting a plant or plant part having improved digestibility, preferably improved stover digestibility, comprising screening for the presence of a QTL allele (such as in isolated genetic material from the plant or plant part) comprising a nucleotide sequence of a gene encoding a cytochrome P450 flavonoid 3',5'-hydroxylase (F35H), having a mutation leading to reduced or absent expression of the mRNA of the gene and/or the F35H protein (such as a knock-down or knock-out mutation), or a mutation leading to a non-functional F35H protein (e.g., truncated F35H protein) or an F35H protein having reduced enzymatic activity upon translation.
EP 3 560 330 B1

wherein improved digestibility relates to increased digestibility of the maize plant or plant part from maize having the characteristic of a), b) or c) compared to a maize plant or plant part from maize not having such characteristic; and

wherein the unmutated F35H is selected from the group consisting of:

(i) a nucleotide sequence comprising the sequence of SEQ ID NO: 1;
(ii) a nucleotide sequence having the cDNA of SEQ ID NO: 2;
(iii) a nucleotide sequence encoding for an amino acid sequence having the amino acid sequence of SEQ ID NO: 3;
(iv) a nucleotide sequence having at least 80% identity to the sequence of SEQ ID NO: 1, or 2;
(v) a nucleotide sequence encoding for a polypeptide having at least 80% identity to the sequence of SEQ ID NO: 3;
(vi) a nucleotide sequence hybridizing with the reverse complement of a nucleotide sequence as defined in (i), (ii) or (iii) under stringent hybridization conditions.

[0115] In an embodiment, the invention relates to a method for identifying a maize plant or plant part from maize having improved digestibility, preferably improved stover digestibility, or for selecting a plant or plant part having improved digestibility, preferably improved stover digestibility, comprising isolating genetic material from at least one cell of the plant or plant part, and screening in said genetic material for the presence of a QTL allele comprising a nucleotide sequence of a gene encoding a cytochrome P450 flavonoid 3',5'-hydroxylase (F35H), having a mutation leading to reduced or absent expression of the mRNA of the gene and/or the F35H protein (such as a knock-down or knock-out mutation), or a mutation leading to a non-functional F35H protein (e.g., truncated F35H protein) or an F35H protein having reduced enzymatic activity upon translation.

[0116] In an embodiment, the invention relates to a method for identifying a maize plant or plant part from maize having improved digestibility, preferably improved stover digestibility, or for selecting a plant or plant part having improved digestibility, preferably improved stover digestibility, comprising screening for the presence of a QTL allele (such as in isolated genetic material from the plant or plant part) comprising a nucleotide sequence of a gene encoding a cytochrome P450 flavonoid 3',5'-hydroxylase (F35H) having a mutation leading to reduced or absent expression of the mRNA of the gene and/or the F35H protein (such as a knock-down or knock-out mutation), or a mutation leading to a non-functional F35H protein (e.g., truncated F35H protein) or an F35H protein having reduced enzymatic activity upon translation, and selecting a plant or plant part in which the QTL allele is present.

[0117] In an embodiment, the invention relates to a method for identifying a maize plant or plant part from maize having improved digestibility, preferably improved stover digestibility, or for selecting a plant or plant part having improved digestibility, preferably improved stover digestibility, comprising isolating genetic material from at least one cell of the plant or plant part, screening in said genetic material for the presence of a QTL allele comprising a nucleotide sequence of a gene encoding a cytochrome P450 flavonoid 3',5'-hydroxylase (F35H) having a mutation leading to reduced or absent expression of the mRNA of the gene and/or the F35H protein (such as a knock-down or knock-out mutation), or a mutation leading to a non-functional F35H protein (e.g., truncated F35H protein) or an F35H protein having reduced enzymatic activity upon translation, and selecting a maize plant or plant part from maize in which the QTL allele is present.

[0118] In certain embodiments, the QTL allele is located on chromosome 9 and comprises and/or is flanked by (molecular) marker alleles ma61070s01 and ma30168s02, preferably by marker alleles ma50827s01 and ma16983s02, more preferably by marker alleles ma17117s01 and ma61125s01.

[0119] In certain embodiments, the QTL allele is located on chromosome 9 and comprises the (molecular) marker allele of ma61134xxx

[0120] In certain embodiments, the QTL allele is located on a chromosomal interval comprising and/or flanked by (molecular) marker alleles ma61070s01 and ma30168s02, preferably by marker alleles ma50827s01 and ma16983s02, more preferably by marker alleles ma17117s01 and ma61125s01.

[0121] In certain embodiments, the QTL allele is located on a chromosomal interval comprising the marker allele of ma61134xxx and/or one or more molecular marker alleles located in a chromosomal interval on chromosome 9 flanked by marker alleles ma61070s01 and ma30168s02, preferably by marker alleles ma50827s01 and ma16983s02, more preferably by marker alleles ma17117s01 and ma61125s01, preferably wherein the one or more molecular marker alleles are detectable by a polynucleic acid, such as an allele specific polynucleic acid (molecular marker), suitable for hybridization as forward primer and reverse primer to a locus in the chromosomal interval which co-segregates with the improved digestibility.

[0122] In an aspect, the invention relates to a method for identifying a maize plant or plant part from maize having improved digestibility, preferably improved stover digestibility, or for selecting a plant or plant part having improved digestibility, preferably improved stover digestibility, comprising screening (such as in isolated genetic material from the plant or plant part) for the presence of a mutation leading to reduced or absent expression of the mRNA of a gene
wherein improved digestibility relates to increased digestibility of the maize plant or plant part from maize having the characteristic of a), b) or c) compared to a maize plant or plant part from maize not having such characteristic; and

wherein the unmutated F35H is selected from the group consisting of:

(i) a nucleotide sequence comprising the sequence of SEQ ID NO: 1;
(ii) a nucleotide sequence having the cDNA of SEQ ID NO: 2;
(iii) a nucleotide sequence encoding for an amino acid sequence having the amino acid sequence of SEQ ID NO: 3;
(iv) a nucleotide sequence having at least 80% identity to the sequence of SEQ ID NO: 1, or 2;
(v) a nucleotide sequence encoding for a polypeptide having at least 80% identity to the sequence of SEQ ID NO: 3;
(vi) a nucleotide sequence hybridizing with the reverse complement of a nucleotide sequence as defined in (i), (ii) or (iii) under stringent hybridization conditions.

In an embodiment, the invention relates to a method for identifying a maize plant or plant part from maize having improved digestibility, preferably improved stover digestibility, or for selecting a maize plant or plant part from maize having improved digestibility, preferably improved stover digestibility, comprising isolating genetic material from at least one cell of the plant or plant part, and screening in said genetic material for the presence of a mutation leading to reduced or absent expression of the mRNA of a gene encoding a cytochrome P450 flavonoid 3',5'-hydroxylase (F35H) and/or the F35H protein (such as a knock-down or knock-out mutation), or a mutation leading to a non-functional F35H protein or an F35H protein having reduced enzymatic activity upon translation.

In an embodiment, the invention relates to a method for identifying a maize plant or plant part from maize having improved digestibility, preferably improved stover digestibility, or for selecting a maize plant or plant part from maize having improved digestibility, preferably improved stover digestibility, comprising analising (such as in isolated material from the plant or plant part) (protein and/or mRNA) expression level of a gene encoding a cytochrome P450 flavonoid 3',5'-hydroxylase (F35H), and screening for reduced or absent expression of the mRNA of a gene encoding a cytochrome P450 flavonoid 3',5'-hydroxylase (F35H) and/or the F35H protein or for a non-functional F35H protein or an F35H protein having reduced enzymatic activity;
In an embodiment, the invention relates to a method for identifying a maize plant or plant part from maize having improved digestibility, preferably improved stover digestibility, or for selecting a maize plant or plant part from maize having improved digestibility, preferably improved stover digestibility, comprising isolating material from at least one cell of the plant or plant part, and optionally analysing the (protein and/or mRNA) expression level of a gene encoding a cytochrome P450 flavonoid 3',5'-hydroxylase (F35H) in said material, and/or screening for reduced or absent expression of the mRNA of a gene encoding a cytochrome P450 flavonoid 3',5'-hydroxylase (F35H) and/or the F35H protein or for a non-functional F35H protein or an F35H protein having reduced enzymatic activity in said material.

In an embodiment, the invention relates to a method for identifying a maize plant or plant part from maize having improved digestibility, preferably improved stover digestibility, or for selecting a maize plant or plant part from maize having improved digestibility, preferably improved stover digestibility, comprising isolating material from at least one cell of the plant or plant part, and analysing the (protein and/or mRNA) expression level of a gene encoding a cytochrome P450 flavonoid 3',5'-hydroxylase (F35H), and selecting a maize plant or plant part from maize in which the F35H mRNA and/or protein expression or the enzymatic F35H activity is reduced or eliminated or the enzymatic F35H activity is reduced.

In a particular embodiment, the invention relates to a method for identifying a maize plant or plant part from maize in which the F35H mRNA and/or protein expression or the enzymatic F35H activity is reduced or eliminated or the enzymatic F35H activity is reduced, comprising the wild type or native (unmutated) nucleotide sequence of a gene encoding a cytochrome P450 flavonoid 3',5'-hydroxylase (F35H) (e.g., derived from PH207), preferably the reference plant (or plant part) is derived from a near isogenic line.

As used herein, altered (protein and/or mRNA) expression levels refers to decreased expression levels of about at least 10%, preferably at least 30%, more preferably at least 50%, such as at least 20%, 40%, 60%, 80% or more, such as at least 85%, at least 90%, at least 95%, or more.

In a particular embodiment, if the (protein and/or mRNA) expression level of the F35H, in particular the wild type or native F35H, is reduced or expression is (substantially) absent or eliminated, then the maize plant or plant part from maize has improved digestibility. In certain embodiments, if the (protein and/or mRNA) expression level of the F35H, in particular the wild type or native F35H, is reduced or expression is (substantially) absent or eliminated compared to a reference expression level, then the maize plant or plant part from maize has improved digestibility.

In certain embodiments, if the (protein and/or mRNA) expression level of the F35H, in particular the wild type or native F35H, is reduced or expression is (substantially) absent or eliminated compared to a reference expression level, then the maize plant or plant part from maize has improved digestibility. In certain embodiments, if the (protein and/or mRNA) expression level of the F35H, in particular the wild type or native F35H, is reduced or expression is (substantially) absent or eliminated compared to a reference expression level, then the maize plant or plant part from maize has improved digestibility.
As used herein, reduced (protein and/or mRNA) expression levels refers to decreased expression levels of about at least 10%, preferably at least 30%, more preferably at least 50%, such as at least 20%, 40%, 60%, 80% or more, such as at least 85%, at least 90%, at least 95%, or more. Expression is (substantially) absent or eliminated if expression levels are reduced at least 80%, preferably at least 90%, more preferably at least 95%. In certain embodiments, expression is (substantially) absent, if no protein and/or mRNA, in particular the wild type or native protein and/or mRNA, can be detected, such as by standard detection methods, including for instance (quantitative) PCR, northern blot, western blot, ELISA, etc.

In an aspect, the invention relates to above method for identifying a maize plant or plant part from maize having improved digestibility, preferably improved stover digestibility, or for selecting a maize plant or plant part from maize having improved digestibility, preferably improved stover digestibility, comprising screening (such as in isolated genetic material from the plant or plant part) for the presence of one or more (molecular) marker allele associated with improved digestibility, said (molecular) marker allele being the molecular marker allele of ma61134xxx, and/or one or more molecular marker alleles located in a chromosomal interval on chromosome 9 flanked by marker alleles ma61070s01 and ma30168s02, preferably by marker alleles ma50827s01 and ma16983s02, more preferably by marker alleles ma17117s01 and ma61125s01, preferably wherein the one or more molecular marker alleles are detectable by a polynucleic acid, such as an allele specific polynucleic acid (molecular marker), suitable for hybridization as forward primer and reverse primer to a locus in the chromosomal interval which co-segregates with the improved digestibility.

In an embodiment, the invention relates to a method for identifying a maize plant or plant part from maize having improved digestibility, preferably improved stover digestibility, or for selecting a plant or plant part having improved digestibility, preferably improved stover digestibility, comprising isolating genetic material from at least one cell of the plant or plant part, and screening in said genetic material for the presence of one or more (molecular) marker allele associated with improved digestibility, said (molecular) marker allele being the molecular marker allele of ma61134xxx, and/or one or more molecular marker alleles located in a chromosomal interval on chromosome 9 flanked by marker alleles ma61070s01 and ma30168s02, preferably by marker alleles ma50827s01 and ma16983s02, more preferably by marker alleles ma17117s01 and ma61125s01, preferably wherein the one or more molecular marker alleles are detectable by a polynucleic acid, such as an allele specific polynucleic acid (molecular marker), suitable for hybridization as forward primer and reverse primer to a locus in the chromosomal interval which co-segregates with the improved digestibility.

In an embodiment, the invention relates to a method for identifying a maize plant or plant part from maize having improved digestibility, preferably improved stover digestibility, or for selecting a plant or plant part having improved digestibility, preferably improved stover digestibility, comprising screening (such as in isolated genetic material from the plant or plant part) for the presence of one or more (molecular) marker allele associated with improved digestibility, said (molecular) marker allele being the molecular marker allele of ma61134xxx, and/or one or more molecular marker alleles located in a chromosomal interval on chromosome 9 flanked by marker alleles ma61070s01 and ma30168s02, preferably by marker alleles ma50827s01 and ma16983s02, more preferably by marker alleles ma17117s01 and ma61125s01, preferably wherein the one or more molecular marker alleles are detectable by a polynucleic acid, such as an allele specific polynucleic acid (molecular marker), suitable for hybridization as forward primer and reverse primer to a locus in the chromosomal interval which co-segregates with the improved digestibility, and selecting a maize plant or plant part from maize in which the one or more (molecular) marker allele is present.

In an embodiment, the invention relates to a method for identifying a maize plant or plant part from maize having improved digestibility, preferably improved stover digestibility, or for selecting a maize plant or plant part from maize having improved digestibility, preferably improved stover digestibility, comprising isolating genetic material from at least one cell of the plant or plant part, screening in said genetic material for the presence of one or more (molecular) marker allele associated with improved digestibility, said (molecular) marker allele being the molecular marker allele of ma61134xxx, and/or one or more molecular marker alleles located in a chromosomal interval on chromosome 9 flanked by marker alleles ma61070s01 and ma30168s02, preferably by marker alleles ma50827s01 and ma16983s02, more preferably by marker alleles ma17117s01 and ma61125s01, preferably wherein the one or more molecular marker alleles are detectable by a polynucleic acid, such as an allele specific polynucleic acid (molecular marker), suitable for hybridization as forward primer and reverse primer to a locus in the chromosomal interval which co-segregates with the improved digestibility, and selecting a maize plant or plant part from maize in which the one or more (molecular) marker allele is present.

In an aspect, the invention relates to above method for identifying a maize plant or plant part from maize having improved digestibility, preferably improved stover digestibility, or for selecting a maize plant or plant part from maize having improved digestibility, preferably improved stover digestibility, comprising screening (such as in isolated genetic material from the plant or plant part) for the presence of the molecular marker allele of ma61134xxx, and/or one or more molecular marker alleles located in a chromosomal interval on chromosome 9 flanked by marker alleles ma61070s01 and ma30168s02, preferably by marker alleles ma50827s01 and ma16983s02, more preferably by marker alleles ma17117s01 and ma61125s01, preferably wherein the one or more molecular marker alleles are detectable by a poly-
In an embodiment, the invention relates to a method for identifying a maize plant or plant part from maize having improved digestibility, preferably improved stover digestibility, or for selecting a maize plant or plant part from maize having improved digestibility, preferably improved stover digestibility, comprising isolating genetic material from at least one cell of the plant or plant part, and screening in said genetic material for the presence of the molecular marker allele of ma61134xxx, and/or one or more molecular marker alleles located in a chromosomal interval on chromosome 9 flanked by marker alleles ma61070s01 and ma30168s02, preferably by marker alleles ma61070s01 and ma61983s02, more preferably by marker alleles ma17117s01 and ma61125s01, preferably wherein the one or more molecular marker alleles are detectable by a polynucleic acid, such as an allele specific polynucleic acid (molecular marker), suitable for hybridization as forward primer and reverse primer to a locus in the chromosomal interval which co-segregates with the improved digestibility.

In an embodiment, the invention relates to a method for identifying a maize plant or plant part from maize having improved digestibility, preferably improved stover digestibility, or for selecting a maize plant or plant part from maize having improved digestibility, preferably improved stover digestibility, comprising screening (such as in isolated genetic material from the plant or plant part) for the presence of the molecular marker allele of ma61134xxx, and/or one or more molecular marker alleles located in a chromosomal interval on chromosome 9 flanked by marker alleles ma61070s01 and ma30168s02, preferably by marker alleles ma61070s01 and ma61983s02, more preferably by marker alleles ma17117s01 and ma61125s01, preferably wherein the one or more molecular marker alleles are detectable by a polynucleic acid, such as an allele specific polynucleic acid (molecular marker), suitable for hybridization as forward primer and reverse primer to a locus in the chromosomal interval which co-segregates with the improved digestibility, and selecting a maize plant or plant part from maize in which the one or more (molecular) marker allele is present.

In an embodiment, the invention relates to a method for identifying a maize plant or plant part from maize having improved digestibility, preferably improved stover digestibility, or for selecting a maize plant or plant part from maize having improved digestibility, preferably improved stover digestibility, comprising introducing or introgressing into the genome of a plant or plant part a QTL allele associated with improved digestibility and comprising a nucleotide sequence of a gene encoding a cytochrome P450 flavonoid 3',5'-hydroxylase having a mutation.

Methods for screening for the presence of a QTL allele or (molecular) marker allele as described herein are known in the art. Without limitation, screening may encompass or comprise sequencing, hybridization based methods (such as (dynamic) allele-specific hybridization, molecular beacons, SNP microarrays), enzyme based methods (such as PCR, KASP (Kompetitive Allele Specific PCR), RFLP, AFLP, RAPD, Flap endonuclease, primer extension, 5’-nuclease, oligonucleotide ligation assay), post-amplification methods based on physical properties of DNA (such as single strand conformation polymorphism, temperature gradient gel electrophoresis, denaturing high performance liquid chromatography, high-resolution melting of the entire amplicon, use of DNA mismatch-binding proteins, SNPlex, surveyor nuclease assay), etc.

In the present application it is described a method, such as a method for generating/producing a plant or plant part having improved digestibility, preferably improved stover digestibility, and/or improving digestibility of a plant or plant part, preferably stover digestibility, comprising introducing or introgressing into the genome of a plant or plant part a QTL allele associated with improved digestibility and comprising a nucleotide sequence of a gene encoding a cytochrome P450 flavonoid 3',5'-hydroxylase having a mutation.

The present application discloses further a method, such as a method for generating/producing a plant or plant part having improved digestibility, preferably improved stover digestibility, and/or for improving digestibility of a plant or plant part, preferably stover digestibility, comprising introducing or introgressing into the genome of a plant or plant part a QTL allele comprising a nucleotide sequence of a gene encoding a cytochrome P450 flavonoid 3',5'-hydroxylase having a mutation. Such mutation may lead to altered expression of the mRNA of the gene and/or the F35H protein, or the mutation leads to an F35H protein having altered enzymatic activity upon translation, more preferably the mutation leads to reduced or absent expression of the mRNA of said gene and/or the F35H protein, to a knock-out or knock-down of said gene or a mutation leading to a non-functional F35H protein (e.g., truncated F35H protein) (e.g., truncated F35H protein) or an F35H protein having reduced enzymatic activity upon translation or an F35H protein having increased enzymatic activity upon translation.

Further the described method for generating/producing a plant or plant part and/or for improving digestibility of...
a plant or plant part, preferably stover digestibility, the QTL allele is located on chromosome 9 and comprises and/or is flanked by marker alleles ma61070s01 and ma30168s02, preferably by marker alleles ma50827s01 and ma16983s02, more preferably by marker alleles ma17117s01 and ma61125s01, and/or the QTL allele is located on chromosome 9 and comprises the (molecular) marker allele of ma61134xxx, and/or the QTL allele is located on a chromosomal interval comprising and/or flanked by (molecular) marker alleles ma61070s01 and ma30168s02, preferably by marker alleles ma50827s01 and ma16983s02, more preferably by marker alleles ma17117s01 and ma61125s01, and/or the QTL allele is located on a chromosomal interval comprising the marker allele of ma61134xxx and/or one or more molecular marker alleles located in a chromosomal interval on chromosome 9 flanked by marker alleles ma61070s01 and ma30168s02, preferably by marker alleles ma50827s01 and ma16983s02, more preferably by marker alleles ma17117s01 and ma61125s01, preferably wherein the one or more molecular marker alleles are detectable by a polynucleic acid, such as an allele specific polynucleic acid (molecular marker), suitable for hybridization as forward primer and reverse primer to a locus in the chromosomal interval which co-segregates with the improved digestibility.

Additionally a method is disclosed, such as a method for generating/producing a plant or plant part having improved digestibility, preferably improved stover digestibility, and/or for improving digestibility of a plant or plant part, preferably stover digestibility, comprising introducing into the genome of a plant or plant part a QTL allele associated with improved digestibility and comprising the marker allele of ma61134xxx and/or one or more molecular marker alleles located in a chromosomal interval on chromosome 9 flanked by marker alleles ma61070s01 and ma30168s02, preferably by marker alleles ma50827s01 and ma16983s02, more preferably by marker alleles ma17117s01 and ma61125s01, preferably wherein the one or more molecular marker alleles are detectable by a polynucleic acid, such as an allele specific polynucleic acid (molecular marker), suitable for hybridization as forward primer and reverse primer to a locus in the chromosomal interval which co-segregates with the improved digestibility.

Alternatively, the present application describes a method, such as a method for generating/producing a plant or plant part having improved digestibility, preferably improved stover digestibility, and/or for improving digestibility of a plant or plant part, preferably stover digestibility, comprising introducing into the genome of a plant or plant part a QTL allele comprising the marker allele of ma61134xxx and/or one or more molecular marker alleles located in a chromosomal interval on chromosome 9 flanked by marker alleles ma61070s01 and ma30168s02, preferably by marker alleles ma50827s01 and ma16983s02, more preferably by marker alleles ma17117s01 and ma61125s01, preferably wherein the one or more molecular marker alleles are detectable by a polynucleic acid, such as an allele specific polynucleic acid (molecular marker), suitable for hybridization as forward primer and reverse primer to a locus in the chromosomal interval which co-segregates with the improved digestibility.

In an aspect, the invention relates to a method, such as a method for generating/producing a maize plant or plant part having improved digestibility, preferably improved stover digestibility, (e.g., truncated F35H protein) or an F35H protein having reduced enzymatic activity upon translation; a) a maize plant or plant part from maize a nucleotide sequence of a gene encoding a cytochrome P450 flavonoid 3',5'-hydroxylase (F35H) having a mutation leading to reduced or absent expression of the mRNA of the gene and/or the F35H protein (such as a knock-down or knock-out mutation), or a mutation leading to a non-functional F35H protein (e.g., truncated F35H protein) or an F35H protein having reduced enzymatic activity upon translation; or b) a maize plant or plant part from maize having improved digestibility, preferably improved stover digestibility, and/or for improving digestibility of a maize plant or plant part from maize a nucleotide sequence of a gene encoding a cytochrome P450 flavonoid 3',5'-hydroxylase (F35H) having a mutation leading to reduced or absent expression of the mRNA of the gene and/or the F35H protein (such as a knock-down or knock-out mutation), or a mutation leading to a non-functional F35H protein (e.g., truncated F35H protein) or an F35H protein having reduced enzymatic activity upon translation; wherein improved digestibility relates to increased digestibility of maize plant or plant part from maize having the characteristic of a), b), c), d) or e) compared to a maize plant or plant part from maize not having such characteristic, and wherein the unmutated F35H is selected from the group consisting of:

(i) a nucleotide sequence comprising the sequence of SEQ ID NO: 1, 4, or 7;
(ii) a nucleotide sequence having the cDNA of SEQ ID NO: 2, 5, or 8;
(iii) a nucleotide sequence encoding for an amino acid sequence having the amino acid sequence of SEQ ID NO: 3, 6, or 9;
(iv) a nucleotide sequence having at least 80% identity to the sequence of SEQ ID NO: 1, 2, 4, 5, 7, or 8;
(v) a nucleotide sequence encoding for a polypeptide having at least 80% identity to the sequence of SEQ ID NO: 3, 6, or 9; and
(vi) a nucleotide sequence hybridizing with the reverse complement of a nucleotide sequence as defined in (i), (ii) or (iii) under stringent hybridization conditions.

In an aspect, the invention relates to a method, such as a method for generating/producing a maize plant or plant part from maize having improved digestibility, preferably improved stover digestibility, and/or for improving digestibility of a maize plant or plant part from maize, preferably stover digestibility, comprising introducing into the genome of a maize plant or plant from maize, in particular into a nucleotide sequence of an endogenous gene encoding a...
cytochrome P450 flavonoid 3',5'-hydroxylase a mutation leading to reduced or absent expression of the mRNA of the
gene and/or the F35H protein (such as a knock-down or knock-out mutation), or a mutation leading to a non-functional
F35H protein or an F35H protein having reduced enzymatic activity upon translation;

wherein improved digestibility relates to increased digestibility of maize plant or plant part from maize having the
characteristic of a), b), c), d) or e) compared to a maize plant or plant part from maize not having such characteristic,
and

wherein the unmutated F35H is selected from the group consisting of:

(i) a nucleotide sequence comprising the sequence of SEQ ID NO: 1, 4, or 7;
(ii) a nucleotide sequence having the cDNA of SEQ ID NO: 2, 5, or 8;
(iii) a nucleotide sequence encoding for an amino acid sequence having the amino acid sequence of SEQ ID
NO: 3, 6, or 9;
(iv) a nucleotide sequence having at least 80% identity to the sequence of SEQ ID NO: 1, 2, 4, 5, 7, or 8;
(v) a nucleotide sequence encoding for a polypeptide having at least 80% identity to the sequence of SEQ ID
NO: 3, 6, or 9; and
(vi) a nucleotide sequence hybridizing with the reverse complement of a nucleotide sequence as defined in (i),
(ii) or (iii) under stringent hybridization conditions.

[0151] In an aspect, the invention relates to a method, such as a method for generating/producing a maize plant or
plant part from maize having improved digestibility, preferably improved stover digestibility, and/or for improving digest-
ibility of a maize plant or plant part from maize, preferably stover digestibility, comprising altering an endogenous gene
encoding a cytochrome P450 flavonoid 3',5'-hydroxylase gene, preferably knocking out an endogenous gene encoding
a cytochrome P450 flavonoid 3',5'-hydroxylase gene;

wherein improved digestibility relates to increased digestibility of maize plant or plant part from maize having the
characteristic of a), b), c), d) or e) compared to a maize plant or plant part from maize not having such characteristic,
and

wherein the unmutated F35H is selected from the group consisting of:

(i) a nucleotide sequence comprising the sequence of SEQ ID NO: 1, 4, or 7;
(ii) a nucleotide sequence having the cDNA of SEQ ID NO: 2, 5, or 8;
(iii) a nucleotide sequence encoding for an amino acid sequence having the amino acid sequence of SEQ ID
NO: 3, 6, or 9;
(iv) a nucleotide sequence having at least 80% identity to the sequence of SEQ ID NO: 1, 2, 4, 5, 7, or 8;
(v) a nucleotide sequence encoding for a polypeptide having at least 80% identity to the sequence of SEQ ID
NO: 3, 6, or 9; and
(vi) a nucleotide sequence hybridizing with the reverse complement of a nucleotide sequence as defined in (i),
(ii) or (iii) under stringent hybridization conditions.

[0152] In an aspect, the invention relates to a method, such as a method for generating/producing a maize plant or
plant part from maize having improved digestibility, preferably improved stover digestibility, and/or for improving digest-
ibility of a maize plant or plant part from maize, preferably stover digestibility, comprising reducing mRNA expression of
gene encoding a cytochrome P450 flavonoid 3',5'-hydroxylase gene (F35H) and/or the encoded F35H protein, preferably
knocking down mRNA expression of gene encoding a cytochrome P450 flavonoid 3',5'-hydroxylase gene (F35H) and/or
the encoded F35H protein;

wherein improved digestibility relates to increased digestibility of maize plant or plant part from maize having the
characteristic of a), b), c), d) or e) compared to a maize plant or plant part from maize not having such characteristic,
and

wherein the unmutated F35H is selected from the group consisting of:

(i) a nucleotide sequence comprising the sequence of SEQ ID NO: 1, 4, or 7;
(ii) a nucleotide sequence having the cDNA of SEQ ID NO: 2, 5, or 8;
(iii) a nucleotide sequence encoding for an amino acid sequence having the amino acid sequence of SEQ ID
NO: 3, 6, or 9;
(iv) a nucleotide sequence having at least 80% identity to the sequence of SEQ ID NO: 1, 2, 4, 5, 7, or 8;
(v) a nucleotide sequence encoding for a polypeptide having at least 80% identity to the sequence of SEQ ID NO: 3, 6, or 9; and
(vi) a nucleotide sequence hybridizing with the reverse complement of a nucleotide sequence as defined in (i),
(ii) or (iii) under stringent hybridization conditions.

[0153] In an aspect, the invention relates to a method, such as a method for generating/producing a maize plant or
plant part from maize having improved digestibility, preferably improved stover digestibility, and/or for improving digest-
ibility of a maize plant or plant part from maize, preferably stover digestibility, comprising eliminating or reducing or
inhibiting expression of mRNA of a gene encoding a cytochrome P450 flavonoid 3',5'-hydroxylase and/or the F35H
protein, reducing the enzymatic activity of a cytochrome P450 flavonoid 3',5'-hydroxylase (F35H) or inhibiting the F35H
protein, or increasing the enzymatic activity of a cytochrome P450 flavonoid 3',5'-hydroxylase (F35H);

wherein improved digestibility relates to increased digestibility of maize plant or plant part from maize having the
characteristic of a), b), c), d) or e) compared to a maize plant or plant part from maize not having such characteristic, and

wherein the unmutated F35H is selected from the group consisting of:

(i) a nucleotide sequence comprising the sequence of SEQ ID NO: 1, 4, or 7;
(ii) a nucleotide sequence having the cDNA of SEQ ID NO: 2, 5, or 8;
(iii) a nucleotide sequence encoding for an amino acid sequence having the amino acid sequence of SEQ ID
NO: 3, 6, or 9;
(iv) a nucleotide sequence having at least 80% identity to the sequence of SEQ ID NO: 1, 2, 4, 5, 7, or 8;
(v) a nucleotide sequence encoding for a polypeptide having at least 80% identity to the sequence of SEQ ID
NO: 3, 6, or 9; and
(vi) a nucleotide sequence hybridizing with the reverse complement of a nucleotide sequence as defined in (i),
(ii) or (iii) under stringent hybridization conditions.

[0154] In certain embodiments, the invention relates to a method, such as a method generating/producing a maize
plant or plant part from maize having improved digestibility, preferably improved stover digestibility, and/or for improving
digestibility, preferably stover digestibility, of a maize plant or plant part, comprising

A. introducing into a nucleotide sequence of an endogenous gene of the plant or plant part encoding a cytochrome
P450 flavonoid 3',5'-hydroxylase a mutation leading reduced or absent expression of the mRNA of said gene and/or
the F35H protein, to a knock-out or knock-down of said gene or a mutation leading to a non-functional F35H protein
(e.g., truncated F35H protein) or an F35H protein having reduced enzymatic activity upon translation; or

B. introducing into the genome of the plant or plant part a first double-stranded DNA and a second double-stranded
DNA, wherein the nucleotide sequences of the coding strands of the first and second DNA are reverse complements
of each other, so that a transcript of the first DNA and a transcript of the second DNA are capable of hybridizing to
form a double-stranded RNA, wherein the coding strand of the first or the second DNA comprises:

a. at least 19 successive nucleotides of the nucleotide sequence of SEQ ID NO: 2, 5, or 8 or of a nucleotide
sequence having at least 60% identity, preferably at least 70% or at least 80%, more preferably at least 90%,
at least 92%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98% or at least 99% to the sequence
of SEQ ID NO: 2, 5, or 8; or

b. a nucleotide sequence which is complementary to at least 19 successive nucleotides of the nucleotide
sequence of SEQ ID NO: 2, 5, or 8 or of a nucleotide sequence having at least 60% identity, preferably at least
70% or at least 80%, more preferably at least 90%, at least 92%, at least 94%, at least 95%, at least 96%, at
least 97%, at least 98% or at least 99% to the sequence of SEQ ID NO: 2, 5, or 8; or

C. a double-stranded RNA, wherein one strand corresponds to:

a. at least 19 successive nucleotides of the nucleotide sequence of SEQ ID NO: 2, 5, or 8 or of a nucleotide
sequence having at least 60% identity, preferably at least 70% or at least 80%, more preferably at least 90%,
at least 92%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98% or at least 99% to the sequence
of SEQ ID NO: 2, 5, or 8, wherein T is replaced by U; or

b. a nucleotide sequence which is complementary to at least 19 successive nucleotides of the nucleotide
sequence of SEQ ID NO: 2, 5, or 8 or of a nucleotide sequence having at least 60% identity, preferably at least
70% or at least 80%, more preferably at least 90%, at least 92%, at least 94%, at least 95%, at least 96%, at
least 97%, at least 98% or at least 99% to the sequence of SEQ ID NO: 2, 5, or 8, wherein T is replaced by U; or

D. introducing into the plant or the plant part an RNA-specific CRISPR/Cas system, such as a CRISPR/Cas13a
system, directed against or targeting a nucleotide sequence encoding the F35H protein, or into the genome of
the plant or plant part one or more polynucleotide sequence(s) encoding (and expressing or being capable of expressing)
said RNA-specific CRISPR/Cas system; or

E. introducing into the plant or the plant part a chemical compound or an antibody altering (or being capable to alter)
the enzymatic activity of the F35H protein upon interaction with said F35H, preferably reducing (or being capable
to reduce) the enzymatic activity of the F35H protein or inhibiting (or being capable to inhibit) the enzymatic activity
of F35H protein or increasing (or being capable to increase) the enzymatic activity of the F35H protein upon interaction
with said F35H,

[0155] In certain embodiments, the invention relates to a method, such as a method generating/producing a maize
plant or plant part from maize having improved digestibility, preferably improved stover digestibility, and/or for improving
digestibility, preferably stover digestibility, of a maize plant or plant part from maize, comprising regenerating a plant
from the plant part of aforementioned modified plants or plant parts.

[0156] In an aspect, the invention relates to a maize plant or plant part from maize comprising a QTL allele associated
with improved digestibility, preferably improved stover digestibility, said QTL allele comprising a nucleotide sequence
of a gene encoding a cytochrome P450 flavonoid 3',5'-hydroxylase (F35H) having a mutation leading to reduced or
absent expression of the mRNA of the gene and/or the F35H protein, or a mutation leading to a non-functional F35H
protein (e.g., truncated F35H protein) or an F35H protein having reduced enzymatic activity upon translation;

wherein improved digestibility relates to increased digestibility of the maize plant or plant part from maize having
the characteristic of a), b), c), d) or e) compared to a maize plant or plant part from maize not having such characteristic, and

wherein the unmutated F35H is selected from the group consisting of:

(i) a nucleotide sequence comprising the sequence of SEQ ID NO: 1;
(ii) a nucleotide sequence having the cDNA of SEQ ID NO: 2;
(iii) a nucleotide sequence encoding for an amino acid sequence having the amino acid sequence of SEQ ID
NO: 3;
(iv) a nucleotide sequence having at least 80% identity to the sequence of SEQ ID NO: 1, or 2;
(v) a nucleotide sequence encoding for a polypeptide having at least 80% identity to the sequence of SEQ ID
NO: 3; and
(vi) a nucleotide sequence hybridizing with the reverse complement of a nucleotide sequence as defined in (i),
(ii) or (iii) under stringent hybridization conditions;

wherein the maize plant or plant part from maize is not exclusively obtained by means of an essentially biological
process.

[0157] In certain embodiments, the mutation leads to reduced or absent expression of the mRNA of said gene and/or
the F35H protein, to a knock-out or knock-down of said gene or a mutation leading to a non-functional F35H protein
(e.g., truncated F35H protein) or an F35H protein having reduced or increased enzymatic activity upon translation.
Knockdown or knockout of F35H may be effected for instance by any of the mutagenesis methods described herein.

[0158] In certain embodiments, the QTL allele is located on chromosome 9 and comprises and/or is flanked by (mo-
lecular) marker alleles ma61070s01 and ma30168s02, preferably by marker alleles ma50827s01 and ma16983s02,
more preferably by marker alleles ma17117s01 and ma61125s01.

[0159] In certain embodiments, the QTL allele is located on chromosome 9 and comprises the marker allele of
ma61134xxx and/or one or more molecular marker alleles located in a chromosomal interval on chromosome 9 flanked
by marker alleles ma61070s01 and ma30168s02, preferably by marker alleles ma50827s01 and ma16983s02, more
preferably by marker alleles ma17117s01 and ma61125s01, preferably wherein the one or more molecular marker alleles are detectable by a polynucleic acid, such as an allele specific polynucleic acid (molecular marker), suitable for hybridization as forward primer and reverse primer to a locus in the chromosomal interval which co-segregates with the improved digestibility.

[0160] In certain embodiments, the QTL allele is located on a chromosomal interval comprising and/or flanked by (molecular) marker alleles ma61070s01 and ma30168s02, preferably by marker alleles ma50827s01 and ma16983s02, more preferably by marker alleles ma17117s01 and ma61125s01.

[0161] In certain embodiments, the QTL allele is located on a chromosomal interval comprising the marker allele of ma61134xxx and/or one or more molecular marker alleles located in a chromosomal interval on chromosome 9 flanked by marker alleles ma61070s01 and ma30168s02, preferably by marker alleles ma50827s01 and ma16983s02, more preferably by marker alleles ma17117s01 and ma61125s01, preferably wherein the one or more molecular marker alleles are detectable by a polynucleic acid, such as an allele specific polynucleic acid (molecular marker), suitable for hybridization as forward primer and reverse primer to a locus in the chromosomal interval which co-segregates with the improved digestibility.

[0162] In an aspect, the invention relates to a maize plant or plant part from maize comprising a nucleotide sequence of a gene encoding a cytochrome P450 flavonoid 3',5'-hydroxylase (F35H) having a mutation leading to reduced or absent expression of the mRNA of the gene and/or the F35H protein, or a mutation leading to a non-functional F35H protein (e.g., truncated F35H protein) or an F35H protein having reduced enzymatic activity upon translation; wherein improved digestibility relates to increased digestibility of the maize plant or plant part from maize having the characteristic of a), b), c), d) or e) compared to a maize plant or plant part from maize not having such characteristic, and wherein the unmutated F35H is selected from the group consisting of:

(i) a nucleotide sequence comprising the sequence of SEQ ID NO: 1;
(ii) a nucleotide sequence having the cDNA of SEQ ID NO: 2;
(iii) a nucleotide sequence encoding for an amino acid sequence having the amino acid sequence of SEQ ID NO: 3;
(iv) a nucleotide sequence having at least 80% identity to the sequence of SEQ ID NO: 1, or 2;
(v) a nucleotide sequence encoding for a polypeptide having at least 80% identity to the sequence of SEQ ID NO: 3; and
(vi) a nucleotide sequence hybridizing with the reverse complement of a nucleotide sequence as defined in (i), (ii) or (iii) under stringent hybridization conditions;

wherein the maize plant or plant part from maize is not exclusively obtained by means of an essentially biological process.

[0163] In a certain embodiment, the invention relates to a maize plant or plant part from maize comprising the marker allele of ma61134xxx and/or one or more molecular marker alleles located in a chromosomal interval on chromosome 9 flanked by marker alleles ma61070s01 and ma30168s02, preferably by marker alleles ma50827s01 and ma16983s02, more preferably by marker alleles ma17117s01 and ma61125s01, preferably wherein the one or more molecular marker alleles are detectable by a polynucleic acid, such as an allele specific polynucleic acid (molecular marker), suitable for hybridization as forward primer and reverse primer to a locus in the chromosomal interval which co-segregates with the improved digestibility.

[0164] In an aspect, the invention relates to a maize plant or plant part from maize comprising

A. a gene encoding a cytochrome P450 flavonoid 3',5'-hydroxylase (F35H) having a mutation leading to reduced expression of the mRNA of the gene and/or the F35H protein, or a mutation leading to an F35H protein having reduced enzymatic activity upon translation, more preferably a mutation leading to a knock-out or knock-down of said gene, or having reduced or eliminated mRNA and/or protein expression of an F35H gene, or a mutation leading to a non-functional F35H protein (e.g., truncated F35H protein) or an F35H protein having reduced enzymatic activity upon translation or an F35H protein having increased enzymatic activity upon translation; or

B. a (stably integrated) first double-stranded DNA and a (stably integrated) second double-stranded DNA, wherein the nucleotide sequences of the coding strands of the first and second DNA are reverse complements of each other, so that a transcript of the first DNA and a transcript of the second DNA are capable of hybridizing to form a double-stranded RNA, wherein the coding strand of the first or the second DNA comprises:
a. at least 19 successive nucleotides of the nucleotide sequence of SEQ ID NO: 2, 5, or 8 or of a nucleotide sequence having at least 60% identity, preferably at least 70% or at least 80%, more preferably at least 90%, at least 92%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98% or at least 99% to the sequence of SEQ ID NO: 2, 5, or 8, or

b. a nucleotide sequence which is complementary to at least 19 successive nucleotides of the nucleotide sequence of SEQ ID NO: 2, 5, or 8 or of a nucleotide sequence having at least 60% identity, preferably at least 70% or at least 80%, more preferably at least 90%, at least 92%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98% or at least 99% to the sequence of SEQ ID NO: 2, 5, or 8; or

C. a double-stranded RNA, wherein one strand corresponds to:

a. at least 19 successive nucleotides of the nucleotide sequence of SEQ ID NO: 2, 5, or 8 or of a nucleotide sequence having at least 60% identity, preferably at least 70% or at least 80%, more preferably at least 90%, at least 92%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98% or at least 99% to the sequence of SEQ ID NO: 2, 5, or 8, wherein T is replaced by U; or

b. a nucleotide sequence which is complementary to at least 19 successive nucleotides of the nucleotide sequence of SEQ ID NO: 2, 5, or 8 or of a nucleotide sequence having at least 60% identity, preferably at least 70% or at least 80%, more preferably at least 90%, at least 92%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98% or at least 99% to the sequence of SEQ ID NO: 2, 5, or 8, wherein T is replaced by U; or

D. an RNA-specific CRISPR/Cas system, such as a CRISPR/Cas13a system, directed against or targeting a nucleotide sequence encoding the F35H protein, or one or more polynucleotide sequence(s) encoding (and expressing or being capable of expressing) said RNA-specific CRISPR/Cas system; or

E. a chemical compound or an antibody altering (or being capable to alter) the enzymatic activity of the F35H protein upon interaction with said F35H, preferably reducing (or being capable to reduce) the enzymatic activity of the F35H protein or inhibiting (or being capable to inhibit) the F35H protein upon interaction with said F35H or increasing (or being capable to increase) the F35H protein upon interaction with said F35H;

wherein improved digestibility relates to increased digestibility of the maize plant or plant part from maize having the characteristic of a), b), c), d) or e) compared to a maize plant or plant part from maize not having such characteristic, and

wherein the unmutated F35H is selected from the group consisting of:

(i) a nucleotide sequence comprising the sequence of SEQ ID NO: 1;
(ii) a nucleotide sequence having the cDNA of SEQ ID NO: 2;
(iii) a nucleotide sequence encoding for an amino acid sequence having the amino acid sequence of SEQ ID NO: 3;
(iv) a nucleotide sequence having at least 80% identity to the sequence of SEQ ID NO: 1, or 2;
(v) a nucleotide sequence encoding for a polypeptide having at least 80% identity to the sequence of SEQ ID NO: 3; and
(vi) a nucleotide sequence hybridizing with the reverse complement of a nucleotide sequence as defined in (i), (ii) or (iii) under stringent hybridization conditions;

wherein the maize plant or plant part from maize is not exclusively obtained by means of an essentially biological process.

[0165] In certain embodiments, the plant is not a plant variety.

[0166] Further, it is disclosed in the present application a method for obtaining or generating or producing a plant or plant part, such as a maize or sorghum plant or sugar cane or plant part, preferably a maize plant or plant part, comprising (a) providing a first plant having a QTL allele, such as a QTL allele associated with improved digestibility as described herein elsewhere, optionally wherein said QTL allele is located on a chromosomal interval, preferably on chromosome 9, comprising and flanked by (molecular) marker alleles ma61070s01 and ma30168s02, preferably by marker alleles ma50827s01 and ma16983s02, more preferably by marker alleles ma17117s01 and ma61125s01, (b) crossing said first plant with a second plant, such as a second plant not having said QTL allele, (c) selecting progeny plants having
said QTL allele, and optionally (d) harvesting said plant part from said progeny.

[0167] In certain embodiments, the QTL allele comprises one or more of the marker alleles as described herein elsewhere.

[0168] In certain embodiments, the QTL allele comprises a mutated F35H gene as described herein elsewhere.

[0169] In addition, it is disclosed a method for obtaining or generating or producing a plant or plant part, such as a maize or sorghum or sugar cane plant or plant part, preferably a maize plant or plant part, comprising (a) providing a first plant having a (molecular) marker allele, such as a (molecular) marker allele associated with improved digestibility as described herein elsewhere, optionally wherein said (molecular) marker allele is located on a chromosomal interval, preferably on chromosome 9, comprising and flanked by (molecular) marker alleles ma61070s01 and ma30168s02, preferably by marker alleles ma50827s01 and ma16983s02, more preferably by marker alleles ma17117s01 and ma61125s01; (b) crossing said first plant with a second plant, such as a second plant not having said (molecular) marker allele, (c) selecting progeny plants having said (molecular) marker allele, and optionally (d) harvesting said plant part from said progeny.

[0170] Further, it is described a method for obtaining or generating or producing a plant or plant part, such as a maize or sorghum or sugar cane plant or plant part, comprising (a) providing a first plant having a mutated F35H gene or a first plant in which mRNA and/or protein expression of a F35H gene is altered, such as described herein elsewhere, preferably reduced or (substantially) eliminated or absent, such as described herein elsewhere, optionally wherein said mutated F35H gene is located on a chromosomal interval, preferably on chromosome 9, comprising and flanked by (molecular) marker alleles ma61070s01 and ma30168s02, preferably by marker alleles ma50827s01 and ma16983s02, more preferably by marker alleles ma17117s01 and ma61125s01, (b) crossing said first plant with a second plant, such as a second plant not having said mutated F35H gene, (c) selecting progeny plants having said mutated F35H gene, and optionally (d) harvesting said plant part from said progeny.

[0171] In above disclosed methods for obtaining or generating or producing a plant or plant part the QTL allele, marker allele, and/or F35H mutation in the first plant is present in a homozygous state, and/or the QTL allele, marker allele, and/or F35H mutation in the first plant is present in a heterozygous state, and/or the QTL allele, marker allele, and/or F35H mutation in the second plant is not present, and/or the progeny is selected in which the QTL allele, marker allele, and/or mutated F35H is present in a heterozygous state, and/or the progeny is selected in which the QTL allele, marker allele, and/or mutated F35H is present in a homozygous state.

[0172] In certain embodiments, the methods for obtaining plants or plant parts as described herein according to the invention, such as the methods for obtaining plants or plant parts having improved digestibility, involve or comprise transgenesis and/or gene editing and/or base editing, such as including CRISPR/Cas, TALEN, ZFN, meganucleases; (induced) mutagenesis, which may or may not be random mutagenesis, such as TILLING. In certain embodiments, the methods for obtaining plants or plant parts as described herein according to the invention, such as the methods for obtaining plants or plant parts having improved digestibility, involve or comprise RNAi applications, which may or may not be, comprise, or involve transgenic applications. By means of example, non-transgenic applications may for instance involve applying RNAi components such as double stranded siRNAs to plants or plant surfaces, such as for instance as a spray. Stable integration into the plant genome is not required.

[0173] In certain embodiments, the methods for obtaining plants or plant parts as described herein according to the invention, such as the methods for obtaining plants or plant parts having improved digestibility, do not involve or comprise transgenesis, gene editing, base editing and/or mutagenesis.

[0174] The skilled person will understand that the wild type or unmutated F35H gene product is a functional gene product having enzymatic activity, as defined herein elsewhere. The skilled person will further understand that sequence variations described above for the wild type F35H do not include frame shift or nonsense mutations.

[0175] As used herein, the mutated F35H or the mutation in the F35H may comprise or may refer to any type of F35H mutation. In certain embodiments the mutation alters expression of the wild type or native F35H protein and/or mRNA. In certain embodiments the mutation reduces or eliminates expression of the (wild type or native) F35H protein and/or mRNA, as described herein elsewhere. Mutations may affect transcription and/or translation. Mutations may occur in exons or introns. Mutations may occur in regulatory elements, such as promoters, enhancers, terminators, insulators, etc. Mutations may occur in coding sequences. Mutations may occur in splicing signal sites, such as splice donor or splice acceptor sites. Mutations may be frame shift mutations. Mutations may be nonsense mutations. Mutations may be insertion or deletion of one or more nucleotides. Mutations may be non-conservative mutations (in which one or more wild type amino acids are replaced with one or more non-wild type amino acids). Mutations may affect or alter the function of the F35H protein, such as enzymatic activity. Mutations may reduce or (substantially) eliminate the function of the F35H protein, such as enzymatic activity. Reduced function, such as reduced enzymatic activity, may refer to a reduction of about at least 10%, preferably at least 30%, more preferably at least 50%, such as at least 20%, 40%, 60%, 80% or more, such as at least 85%, at least 90%, at least 95%, or more. (Substantially) eliminated function, such as (substantially) eliminated enzymatic activity, may refer to a reduction of at least 80%, preferably at least 90%, more preferably at least 95%.
95%. Mutations may be dominant negative mutations. In certain embodiments, mutations are evaluated with reference to maize inbred line PH207, as defined herein elsewhere.

[0176] In certain embodiments, the F35H mutation is an insertion of one or more nucleotides in the coding sequence. In certain embodiments, the F35H mutation is a nonsense mutation. In certain embodiments, the F35H mutation results in altered expression of the F35H gene. In certain embodiments, the F35H mutation results in knockout of the F35H gene or knockdown of the F35H mRNA and/or protein. In certain embodiments, the mutation results in a frame shift of the coding sequence of F35H. In certain embodiments, the mutation results in an altered protein sequence encoded by the F35H gene.

[0177] In certain embodiments, the F35H mutation is an insertion, preferably in an exon, preferably an insertion in the first exon, of one or more nucleotides, preferably a frame shift insertion. In certain embodiments, the insertion is 187 nucleotides or about 187 nucleotides. In certain embodiments, the insertion is between position 97 and 98 of the F35H gene represented by the nucleotide sequence of SEQ ID NO: 1. The skilled person is capable of determining the corresponding position in F35H homologues or orthologues. In certain embodiments, the insertion comprises or consists of the nucleotide sequence of SEQ ID NO: 10. In certain embodiments, the mutated F35H comprises the nucleotide sequence of SEQ ID NO: 11.

[0178] F35H mRNA and/or protein expression may be reduced or eliminated by mutating the F35H gene itself (including coding, non-coding, and regulatory element). Methods for introducing mutations are described herein elsewhere. Alternatively, F35H mRNA and/or protein expression may be reduced or eliminated by (specifically) interfering with transcription and/or translation, such as to decrease or eliminate mRNA and/or protein transcription or translation. Alternatively, F35H mRNA and/or protein expression may be reduced or eliminated by (specifically) interfering with mRNA and/or protein stability, such as to reduce mRNA and/or protein stability. By means of example, mRNA (stability) may be reduced by means of RNAi, as described herein elsewhere. Also miRNA can be used to affect mRNA (stability). In certain embodiments, a reduced F35H expression which is achieved by reducing mRNA or protein stability is also encompassed by the term "mutated" F35H. In certain embodiments, a reduced F35H expression which is achieved by reducing mRNA or protein stability is not encompassed by the term "mutated" F35H.

[0179] In certain embodiments, the (molecular) marker alleles which are associated with improved digestibility as described herein are defined as follows:

- **ma61134xxx**: is an insertion of one or more nucleotides between position 134254381 and 134254382 of chromosome 9 referenced to line PH207, preferably an insertion as set forth in SEQ ID NO: 12; and/or

- **ma61070s01**: is a single nucleotide polymorphism (SNP) at position 121588825 of chromosome 9 referenced to line PH207, wherein said nucleotide is A or T, preferably a single nucleotide polymorphism (SNP) as set forth in SEQ ID NO: 13; and/or

- **ma30168s02**: is a single nucleotide polymorphism (SNP) at position 139452428 of chromosome 9 referenced to line PH207, wherein said nucleotide is A or G, preferably a single nucleotide polymorphism (SNP) as set forth in SEQ ID NO: 14; and/or

- **ma50827s01**: is a single nucleotide polymorphism (SNP) at position 127454426 of chromosome 9 referenced to line PH207, wherein said nucleotide is A or G, preferably a single nucleotide polymorphism (SNP) as set forth in SEQ ID NO: 15; and/or

- **ma16983s02**: is a single nucleotide polymorphism (SNP) at position 137363784 of chromosome 9 referenced to line PH207, wherein said nucleotide is A or G, preferably a single nucleotide polymorphism (SNP) as set forth in SEQ ID NO: 16; and/or

- **ma17117s01**: is a single nucleotide polymorphism (SNP) at position 132038900 of chromosome 9 referenced to line PH207, wherein said nucleotide is A or G, preferably a single nucleotide polymorphism (SNP) as set forth in SEQ ID NO: 17; and/or

- **ma61125s01**: is a single nucleotide polymorphism (SNP) at position 135947973 of chromosome 9 referenced to line PH207, wherein said nucleotide is A or G, preferably a single nucleotide polymorphism (SNP) as set forth in SEQ ID NO: 18; and/or

In certain embodiments, the insertion associated with marker allele ma61134xxx is a frame shift insertion. In certain embodiments, the insertion associated with marker allele ma61134xxx is an insertion of the nucleotide sequence of SEQ ID NO: 10. In certain embodiments, marker allele ma61134xxx comprises or consists of the (contiguous) nucleotide sequence of SEQ ID NO: 12.

In certain embodiments, marker allele ma61070s01 comprises or consists of the (contiguous) nucleotide sequence of SEQ ID NO: 13.

In certain embodiments, marker allele ma30168s02 comprises or consists of the (contiguous) nucleotide sequence of SEQ ID NO: 14.

In certain embodiments, marker allele ma50827s01 comprises or consists of the (contiguous) nucleotide sequence of SEQ ID NO: 15.

In certain embodiments, marker allele ma16983s02 comprises or consists of the (contiguous) nucleotide sequence of SEQ ID NO: 16.

In certain embodiments, marker allele ma17117s01 comprises or consists of the (contiguous) nucleotide sequence of SEQ ID NO: 17.

In certain embodiments, marker allele 61125s01 comprises or consists of the (contiguous) nucleotide sequence of SEQ ID NO: 18.

In an aspect, the invention relates to the use of one or more of the (molecular) markers described herein for identifying a maize plant or plant part from maize having improved digestibility. In an aspect, the invention relates to the use of one or more of the (molecular) markers described herein which are able to detect at least one diagnostic marker allele for identifying a maize plant or plant part from maize having improved digestibility. In an aspect, the invention relates to the detection of one or more of the (molecular) marker alleles described herein for identifying a maize plant or plant part from maize having improved digestibility.

The marker alleles of the invention as described herein may be diagnostic marker alleles which are useable for identifying or selecting maize plants or plant parts from maize having improved digestibility, preferably improved stover digestibility.

Further, the present application discloses a (isolated) polynucleic acid comprising a (molecular) marker allele as described above, or the complement or the reverse complement of a (molecular) marker allele as described above. Such polynucleic acid comprising at least 10 contiguous nucleotides, preferably at least 15 contiguous nucleotides or at least 20 contiguous nucleotides of a (molecular) marker allele as described above, or the complement or the reverse complement of a (molecular) marker allele as described above, and/or such polynucleic acid comprising at least 10 contiguous nucleotides, preferably at least 15 contiguous nucleotides or at least 20 contiguous nucleotides of any of SEQ ID NOs: 10, 12, 13, 14, 15, 16, 17, or 18, or the complement or the reverse complement of any of SEQ ID NOs: 10, 12, 13, 14, 15, 16, 17, or 18, and/or the polynucleic acid is capable of discriminating between a (molecular) marker allele as described above and a non-molecular marker allele, such as to specifically hybridise with a (molecular) marker allele as described above, and/or the polynucleic acid is capable of hybridising with a unique nucleotide fragment or section of any of SEQ ID NOs: 10, 12, 13, 14, 15, 16, 17, or 18, or the complement or the reverse complement of any of SEQ ID NOs: 10, 12, 13, 14, 15, 16, 17, or 18. It will be understood that a unique section or fragment preferably refers to a section or fragment comprising the SNP or the respective marker alleles as described above (such as marker alleles ma61070s01, ma30168s02, ma50827s01, ma16983s02, ma17117s01 or ma61125s01), or a section or fragment comprising the 5’ or 3’ junction of the insert of a marker allele as described above or a section or fraction comprised within the insert of a marker allele as described above (such as marker allele ma61134xxx). Additionally, it is described that the polynucleic acid or the complement or reverse complement thereof does not (substantially) hybridise with or bind to (genomic) DNA originating from maize inbred line PH207, and/or the sequence of the polynucleic acid or the complement or reverse complement thereof does not occur or is not present in maize inbred line PH207.

The present application discloses a polynucleic acid capable of specifically hybridizing with a (molecular) marker allele as described above, or the complement thereof, or the reverse complement thereof.

Such polynucleic acid specifically hybridises with any of the sequences of SEQ ID NOs: 10, 12, 13, 14, 15, 16, 17, or 18, or the complement or the reverse complement thereof, and/or the polynucleic acid is a probe, and/or the polynucleic acid is a probe, and/or the polynucleic acid comprises at least 15 nucleotides, such as 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 nucleotides, such as at least 30, 35, 40, 45, or 50 nucleotides, such as at least 100, 200, 300, or 500 nucleotides.

It will be understood that “specifically hybridizing” means that the polynucleic acid hybridises with the (molecular) marker allele (such as under stringent hybridisation conditions, as defined herein elsewhere), but does not (substantially) hybridise with a polynucleic acid not comprising the marker allele or is (substantially) incapable of being used as a PCR primer. By means of example, in a suitable readout, the hybridization signal with the marker allele or PCR amplification of the marker allele is at least 5 times, preferably at least 10 times stronger or more than the hybridisation signal with a non-marker allele, or any other sequence.

Further, the present application discloses a kit comprising such polynucleic acids, such as primers (comprising
forward and/or reverse primers) and/or probes. The kit may further comprise instructions for use.

In will be understood that in embodiments relating to a set of forward and reverse primers, only one of both primers (forward or reverse) may need to be capable of discriminating between a (molecular) marker allele as described above and a non-marker allele, and hence may be unique. The other primer may or may not be capable of discriminating between a (molecular) marker allele of the invention and a non-marker allele, and hence may be unique.

In a further aspect, the invention relates to a method for producing an ensilaged plant material or animal feed having improved digestibility, comprising (a) growing the plant according to the present invention, (b) harvesting the plant or plant parts, (c) optionally, chopping and/or crushing the plant, and (c) ensiling the plant, optionally by adding a stimulant like a bacterial inoculant, a sugar, and an enzyme. Furthermore, the invention relates to an ensilaged plant material or animal feed produced by said method.

In the present application, it is disclosed also a method for producing biogas or bioethanol, comprising the following steps: (a) providing the plant or plant parts according to the present invention or the ensilaged plant material according to the present invention, and (b) producing biogas or bioethanol from the plant or the ensilaged plant material.

The aspects and embodiments of the invention are further supported by the following non-limiting examples.

EXAMPLES

EXAMPLE 1

A QTL experiment on stover digestibility was carried out in two DH (double haploid) populations. In both populations, a QTL with strong effect was identified on the same chromosomal position on chromosome 9 (Fig. 1). The QTL region seems to not contain any of known characterized genes of the lignin metabolism.

Marker analysis using high density SNP genotyping with a SNP array showed no polymorphisms between the line harbouring the positive allele of the QTL and other commercially available lines. Taking advantage of this effect, a sequence capture experiment was carried out using a QTL carrying line and a control line. As at that time, the only genomic reference sequence was AGPv02, probes for sequence capture were developed on this reference. Data analysis turned out to be very difficult due to high repetitiveness of the region and partly low similarity between the region in B73 (AGPv02) and the QTL allele. Out of this experiment one marker, ma60405s01, was developed showing a polymorphism between the two lines in the QTL region.

In order to identify further preferably polymorphic markers, a WGS (Whole Genome Sequencing) of one QTL carrying line was performed. Scaffolds covering the target were selected and compared to the reference genome of PH207 ("Draft Assembly of Elite Inbred Line PH207 Provides Insights into Genomic and Transcriptionome Diversity in Maize", Hirsch et al., Plant Cell. 2016 Nov; 28(11): 2700-2714. Published online 2016 Nov 1. doi: 10.1105/tpc.16.00353). Three more polymorphic markers could be identified (ma61126d01, ma61134xxx and ma61125s01, see Fig. 2). Their QTL specific alleles are unique and cannot be detected in any KWS line used for silage maize breeding.

Fine-mapping of the QTL has narrow down the region first to 16.7 MB and in the last step to approx. 719kb on the PH207 reference (see Fig. 3 and Table 1). Fig3 shows two families of recombinants derived of the QTL line (B) crosses with a line not carrying the QTL (A). The indicated DNDF is the mean of all family members with or without QTL respectively. The marker, which is best associated with the phenotype in the latest recombinants, is ma61134xxx. It represents an insertion of 187 bp in a gene coding for a cytochrome P450 flavonoid 3',5'-hydroxylase (called F35H, see Fig. 4). This insertion causes an elongation of the N-terminus of the protein and an early stop codon leading likely to a knockout of the gene. The corresponding gene of AGPv02 is expressed in leaves and stem. It stands at the beginning of the flavonoid metabolism taking resources from the lignin metabolic pathway.

<table>
<thead>
<tr>
<th>marker</th>
<th>Chrom</th>
<th>genetic map [position in cM]</th>
<th>PH207-public [position in bp]</th>
</tr>
</thead>
<tbody>
<tr>
<td>ma61070s01</td>
<td>9</td>
<td>121588825</td>
<td></td>
</tr>
<tr>
<td>ma50827s01</td>
<td>9</td>
<td>127454426</td>
<td></td>
</tr>
<tr>
<td>ma17117s01</td>
<td>9</td>
<td>132038900</td>
<td></td>
</tr>
<tr>
<td>ma60405s01</td>
<td>9</td>
<td>133444836</td>
<td></td>
</tr>
<tr>
<td>ma61134xxx</td>
<td>9</td>
<td>134254381</td>
<td></td>
</tr>
<tr>
<td>ma61125s01</td>
<td>9</td>
<td>135947973</td>
<td></td>
</tr>
<tr>
<td>ma16983s02</td>
<td>9</td>
<td>137363784</td>
<td></td>
</tr>
</tbody>
</table>
Within the region of 133.4-135.9MB of chromosome 9 in PH207 all other hypothetical genes derived of internal maker annotation of PH207 were checked for polymorphism between the QTL line and PH207. Out of more than 100 genes, only the described one showed a polymorphism. 79 genes were identical. The rest was mostly repetitive or only partly represented in the assembly of the QTL-line.

The capillary marker ma61134xxx could be converted to a pair of dominant KASP markers and to a codominant KASP marker, all three are available for routine use.

Most important diagnostic marker ma61134xxx is directed to the insertion in the causative gene. The insertion is present in the genotype carrying the silage QTL and absent in reference line PH207. In PH207 the following sequence is not present in the gene (SEQ ID NO: 10):

CTTCTGCCCCAGAGCGGGCCAGACATTGAGATTGGGATTTCAAAATTTGCAAGATTAAGA
ATTAGTTTCTCTACGCTTTTTTCTGAATACATATTGCTGAAATTAGTGTCTTACACAATATAG
ATCACCACAAACATGGGTATTTCAATGAAATACCATGAAACCCCTTGGGCCGGCCCATG

The person skilled in the art is able to design markers for known marker systems which allows the detection of the presence or absence of the insertion.

Furthermore, one skilled in the art is also able to find markers for known marker systems which are suitable for further analysing of the silage QTL region as well as markers with diagnostic value basing for instances on single nucleotide polymorphisms (SNPs) or InDels (see exemplary Table 2)

In conclusion, the present invention describes the identification of a marker haplotype spanning 3.8MB of PH207 (see Fig. 2) and describing the genotype of the QTL line in the target region: The set of markers identified during the mapping (see Table 1 and 2) can be used to integrate the positive QTL in any relevant genetic background. Most important is the marker diagnostic for the insertion which is the functional mutation. However, the use of markers outside of the gene in flanking region closely linked to the gene can also be used in order to identify the genotype of QTL line. The unique haplotype of markers (see Fig. 2) can be used for marker assisted applications, i.e. for trait introgression through backcrossing or forward breeding and for monitoring of the presence of the unique silage haplotype. In addition, the developed markers can be used to increase the genetic variation in this chromosomal region and keeping the advantageous silage allele. Further described is the identification of a gene for the target. The knowledge of the gene
and the found insertion (functional mutation) can be used for increasing genetic variability in this locus either by tilling or by genome editing or genetic modification to further improve the effect.

SEQUENCE LISTING

[0208]

<KWS SAAT SE>

Plants with improved digestibility and marker haplotypes

<KWS0277EP>

18

PatentIn version 3.5

1

4215

DNA

Zea mays

1
atgcagctcg gggcgttgtag cacccagcccc gttggtcttgt gcaagcgcttt ctctctgcttc 60
ctctctcaacg tgggctctcgg ctggtctgctg caccctccttt ctgcggccttc ttcctctcggg 120
cggcggcgggc aagcctccggcc ggggccaccc ggcctggegga tcctcggcggc gtgtgcaacgc 180
gtgggcggcag ccggcgacacgc cggtgctgggcc gcggctgggcc gcaagttacgc tcccatcatgc 240	
taacctgaaga tgggcacgggc cgggtgtggtg gtggcgtctgtg cccgcgcccc gggcgccagcg 300
ttcctcaacgg cgtgctgagcc ggcggacggcc aacccggcggg cgggtgcccgag cggcgcggcag 360
atcaactacgc ggccgaagaa actgttgtgc ggcgactcgc gcggcccaagtg gaaagctgatg 420
cggagagcgtcg ccagcgcctgc gcgtctgctgc gcggccgcgc gcgctggctgc gcgcctggcagc 480
cggcggcggcg aagcggcccgc cgtgctgctgc gcggctggcggc agggcggcgc gcggccgcagg 540
ccggctgtcg tcgggagagt gcgtggtgtgc gcgcctggcgc aacatgtgcg gcagatcaca 600
gtgagcaagcg ggggttgtcga ccgcccaggg gacgcctcgc aacagttgag atggaggtgc 660
catgaatcc tacagcggtg gagcatgcac aaaaatctct ttgggaagga aagacaatct 720
ttttgctacta aattatatgc tctgtttctct ttaagtttctg ataaagttgct ataaagttgtt 780
ttaggtagttggct gtagacatccca attagagtttctct tataatccaa ataaagttgctttg 840
tcttgaaaaa aatgaaatct ctttggaaaaa ataggtttcct aaactagcccc tcaataaacgt 900
rttaatggctag ctggttgctct gcctctcatt caacttcttc tggggtctgtg 960
tgagagattg tagttacgctgc tggctctcttc tattgcaaaa gacaacatcta cgtagcaca 1020
tggacattgg tgcagcatgg tgcacatag cattcagcag cactctattt aaattcagctg 1080
tctatagttg ttggatatat tttattaagg aaccccctcca acgtggtgtgt gtgtatgtgtt 1140
ggaaggtgtgtt attttgatatt tgaataataca acactagacgc ttagatctaa aatgattggtt 1200
gattgattaa tatggtcacc atgtgcacca gccttctattt tggaccagcat atgctctcctta 1260
ttgcaatgcg tagcagcggac accagctagc actagcagac tggatatctg gaaagaaaaa 1320
acataaaaaatcacagctagc aaggtgtgctgct cactgtgtcag tatatatgtg gaagactgaa 1380
caatctgcct gacaagcata acttagctta aaacgcgaaaa gacgcgattga aacgggccgct 1440
cgataaatc ctaaatgagag cttctgggatt tttcatgcat gaaaaaacc aagacctgcca 1500
ttttcataat aataacgctga tatacatattg cgtgcagata caagagcatg 1560
atcttgctgc tgcgtacggc caacggcagat ttcaacatca gcgcactctgt gcggcgcctg 1620
gcgcgttctgg aacgtgcaggg gctgacaggcg aagctgcgacgc gcgctccaccc caagtctgac 1680
ggcctcatac ccaagctgct ggccgagcag gcgcggactgc cccgggacag cccggcgccag 1740
ccccgcctgg actccggctca ccgctccgag gcgcagcctgg acgcgcgggc gcgcgcggcgac 1800
gacgagagcg gcgagacacc cccagagctc aacatcaagg gcctctccct gcataagctcc 1860
tgcttttcct tctcccccga accatgctat actatatgca cttatatattt acacttgctc 1920
gtttttcctt tagtaacctaa acaaatcgct gcagctgcagc tacaagctgc acactgacta 1980
caggcagtg ctcagcagtt cagtaatctaa ggtgacatat agtcagacgc gcgcgggatca 2040
tgctgtgaca tcggagcctag acaagagccaa tcggccaccta acgaagggcag tcgacagag 2100
tcagggcagc tcgagggcag agatagtggg ctgagttggtt gccacaagaa tataacaaaa 2160
acctcccaaat tgagatgatg tagggctgctgc agtgtttgta atccacctgg ttttctgcaaa 2220
cacattacta gatgtaataa tggctccaaat gttaattgtat aagcgcgaaag ggtctctagc 2280
gtataatgtaa aacrcctccga gtagcacaac caggttgggt tcagctctct cagagggccaa 2340
cttactaat cttactctgc ttctgcctcc tccgctctca ggaacgctgat 2400
ttttacagga ccccttcggca cacctgccag ttgattgact ctgtatttgat gagaagccac 2460
gctaaaaaa cggcagcctag gatagctgat ggttgcctct tcctagccaa acgtgatta 2520
tataaaaatt attccactct cccaaatattcac caaatgcgct gacaaaaatg gaatttttgg 2580
acaaaacaata cgaagtcgcc tccaatatact ttatacagac cgttatattt gatatttttg 2640
atatataatt tattatttt cttcagatgg gcagcccaaag tccatacaaa ttatttacct gatcgcctgc 2700
gttttttttt attaggtaag ggctctttacct ttttctgcaaaa gatttttttt ttttctgcaaa 2760
agaaaaataa ctaaacctct ctaagaaaaa ggaaaaatacct ttgagaatag agttctctaa 2820
actagctcata acagtggtgc agtaaatatc gagagatagat tagactctctg tataagtctgc 2880
agcaacccaca tccggattctg acgctttatgc ttaaatgtcg ctatgtgaca gctggcgcata 2940
ggaaatgcct tcgtacaggc acacaaatgag cagctatgca agtccctcata agcttgagag 3000
agtttaacaa cttgatagat tgcacccact gcacgtgcttc gatcggcttc tttatgtacat 3060
gagaattgag tagtccaaaaac gagaacagtc gcgggaagcag ctggtcctct ccgacacagtg 3120
atccaaagaag tgcctaaaaag acgtgagccg ggtgatatct ttcgggtgct gttttaaacg 3180
ccaaagatgc tcgaaataac tgatcgtcaca ccacgctgaa tttatcttct gacacacagt 3240
taccaaatcc ttgtagtaaa ttaagggat aatattgacca cttagacct ttgaaaccat 3300
.tttttgcac taattacca cactgttctt tggcttgacct tgtgaaaaaa aaactttttt 3360
gtgacgagt gttggctgtta acacatacctc acttggttggctg ctagatgtaa 3420
.ttattacatt gaacgcgccgc ccgtaagaca atgcacaccct cttcaagctc tagttcacag 3480
atagctaca taataagtag taatgttcgt tctactagttg cttactctcga actatttttt 3540
tcggcaaac tcaagtaaag acaacgtttt gttccgctagg acatgttccac ggccgggtacg 3600
gcagctcgcg ctgcatcgcgt ggagttgggag atgggctgaga tgtgcaagaa cccgacgccctc 3660
atgggctggcc gcagacgcag gcttggaacct gcggcggtgccc gggggcgcccg cctgggaggag 3720
tcgagcccgc ccggtctccc ctacactcag ccggtgctgca aggggtcctc cggcgcctgac 3780
ccgtccacgc gcgcctcgcct ccgccagcctt ctctgtggcct gctgtgacgctg ccgggacgccg 3840
taccggtcgc ccggcaaacac ccggtcctgc ctcaacgtctg gggccactgg cccgggacccgc 3900
gaggctgggg aagggccctt cgccttcgcc cccgagccgt tctgcccggc ggcccggcctgg 3960
gagaaggtgc accccctggg gaactcgcttc gagctcaccc cgtcgccgcc gcggccggagg 4020
atctggcggc gcagtgctgg gggcatgcttg ttgctgtgcag ctcttctggg gacgcgtgctg 4080
cacggttccg actgccgcct gcctgacgcc gaggagaagc tggacatgcgc cggacgctccc 4140
ggccctggcc tcgccaaggg aagtgcgctcgc gccgctgctc ccagcccaagc gctggttgcgg 4200
gaagctctagc cctga 4215

<210> 2
<211> 1584
<212> DNA
<213> Artificial Sequence

<220>
<223> cDNA of SEQ ID NO: 1

<400> 2
atgcagctcg cgccggtgtgt cacagaccccc tgttggtctgtg gcaagcccttt cctcctgcctc 60
cctctccacg ttgctctcccg ctggtctctgt cacccctccttt ctggccgcttc tctctccggg 120
cgccgogggc agctccggccc gggggccacgg ggcttgccga tctctgggacg gctggccactc 180
gtggcccaag ccccgccagcc cgccctcccc ggcttgccgc gcaagtcaggg gccctcatag 240
taacagagga tgggcacgggc gccggtgctgtgt gttgccagcct cccgcggcgcc ggcgccgacg 300
ttcctcaagg cgcggagagcc ggcgtacgccc aacccggccgg ccggtgaggag gcgcgggacg 360
atcacgtagc ggccgacagaa ctggtgttcgc gcggcactacgc gcggccagttg gaagcgtatg 420
cgggacactcg ccagcctgcaact cctgctgggcc gcggccgggc gcgggtggttg ggcggtggtg 480
cggccggccg agggcggcaca ctggtgctgcgc ggcggtgaggag gcggcggggc gcggccggcag 540
ccggtcgtcgtg tcggccagcct gctggtgtgcgc gccctcgcacca acacgtgctgc ggcagatcaca 600
gtgtacgcaac cgggtgtttcgc ggcgacaggg gcagactcctga gacagatcaca ggcctcacaag 660
ggtgctgctgc tgaaccgacgc gggcatgttc aacatcagcgc aacctgctgcgc gcacgtgtaagc 720
cgggtgctggcc gcggctggagc ccggtgaggag ctggtgacgcgc ggctggccggc gcggcgtggcc 780
cctcactcacca agctctgtgcgc cgacagcccc gcggccgccg gcggcgcggc gcggcgcggcga 840
cgccgccgact ctgctgacgcc gctgctgagcc gcaggtccagcg gcggccgccc gcggcgcggcag 900
gcagcgcggg acgcctcacc gcaggtcacc gcaggtcacc gcctcaacctgc ctatctccagc 960
gccagtacgcc aacaagcagct tgaatcagtcgc ggagtggggc cacggcagatg ctcagcaagac 1020
ccggctgcacc ctggcctgctc gcggcctccc taccctccagcg ccggtgtaacc ggaggcccatcg 1080
cgggtgcctcc cgtcctcgtgg gcctgcgcctcc cctgtgcgttc cctgctgcgc gcggctgcgc 1140
gccgggaggg agggcgctgtgg ccggtggttc gcgctgctgcgc ccggcctggttc cggcctggttc 1200
ggctgctgctgc gcggctgctgctc gcggccagcc gcgcgggttc gcggtgacttc gcggctgtgcgc 1260
cggggcgggg agaaggtcgc cccccctggg aactgtgccgc agctctactcc gcggctgcgc 1320
ggcgggaggaa agggcggtgcgg ccggacaccc gcgcctgctgct gcgtcagttgc gcggctgtgctc 1380
ggggggggg cccctggg gctcgcctgg gcgttggtctg gtctcgagttg ctcctggtggc 1440
acgctgctgc acgccttgccgc cttgctgggct ccggtgagtgg gcagacggtcc gcggctgctgcgc 1500
agagctgctgc gctctgcgctc gcgcgaagcc gcgcgggtgcgc gcggctgctgcgc cgcgcgctgcgc 1560
cctgctgcgc cagcctatgc cttgc 1584

<210> 3
<211> 527
<212> PRT
<213> Zea mays

<400> 3
Met Gln Leu Ala Ala Leu Cys Thr Asp Pro Val Val Leu Cys Ser Ala

1 5 10 15

Phe Leu Cys Leu Leu Leu His Val Ala Leu Arg Ser Leu Leu His Pro

20 25 30

Pro Ser Ala Ala Ser Ser Gly Arg Arg Gly Gln Leu Pro Pro Gly

35 40 45

Pro Pro Gly Leu Pro Ile Leu Gly Ala Leu Pro Leu Val Gly Pro Ala

50 55 60

Pro His Ala Gly Leu Ala Ala Leu Ala Ala Arg Lys Tyr Gly Pro Ile Met

65 70 75 80
Tyr Leu Lys Met Gly Thr Ala Gly Val Val Ala Ser Ser Pro Arg
85 90 95

Ala Ala Arg Thr Phe Leu Lys Ala Leu Asp Ala Arg Tyr Ala Asn Arg
100 105 110

Pro Ala Val Ala Ser Ala Ala Asp Ile Thr Tyr Gly Arg Gln Asn Met
115 120 125

Val Phe Ala Asp Tyr Gly Pro Lys Trp Lys Leu Met Arg Lys Leu Ala
130 135 140

Ser Val His Leu Leu Gly Ala Arg Ala Leu Ala Asp Trp Ala Cys Val
145 150 155 160

Arg Arg Gly Glu Ala Gly His Val Leu Arg Gly Val Ala Glu Ala Ala
165 170 175

Ala Ala Gly Arg Pro Val Val Val Pro Glu Leu Leu Val Cys Ala Leu
180 185 190

 Ala Asn Ile Val Gly Gln Ile Thr Val Ser Lys Arg Val Phe Asp Ala
195 200 205

Gln Gly Asp Asp Ser Asn Arg Tyr Lys Asp Met Ile Val Ser Leu Leu
210 215 220

Thr Gly Thr Gly Met Phe Asn Ile Ser Asp Phe Val Pro Ala Leu Ala
225 230 235 240

Arg Leu Asp Leu Gln Gly Val Gln Ala Lys Leu Arg Arg Val His Arg
245 250 255

Gln Phe Asp Gly Leu Ile Thr Lys Leu Leu Ala Glu His Ala Ala Thr
260 265 270

Ala Ala Asp Arg Ala Arg Gln Gly Pro Asp Phe Val Asp Arg Leu
275 280 285

Arg Ala Thr Met Asp Ala Gly Ala Ala Asp Asp Glu Ser Gly Glu
290 295 300

Thr Ile Thr Glu Val Asn Ile Lys Gly Leu Ile Phe Asp Met Phe Thr
305 310 315 320

Ala Gly Thr Asp Thr Ser Ser Ile Ile Val Glu Trp Ala Met Ala Glu
325 330 335
Met Leu Lys Asn Pro Thr Val Met Ala Arg Ala Gln Glu Glu Leu Asp
340 345 350

Arg Ala Val Gly Arg Gly Arg Arg Leu Glu Glu Ser Asp Leu Pro Gly
355 360 365

Leu Pro Tyr Leu Gln Ala Val Cys Lys Glu Ala Met Arg Leu His Pro
370 375 380

Ser Thr Pro Leu Ser Leu Pro His Phe Ser Leu Asp Ala Cys Asp Asp
385 390 395 400

Val Asp Gly Tyr Arg Val Pro Ala Asn Thr Arg Leu Leu Val Asn Val
405 410 415

Trp Ala Ile Gly Arg Asp Pro Glu Ala Trp Glu Arg Pro Leu Asp Phe
420 425 430

Arg Pro Glu Arg Phe Leu Pro Gly Gly Gly Ala Glu Lys Val Asp Pro
435 440 445

Leu Gly Asn Cys Phe Glu Leu Ile Pro Phe Gly Ala Gly Arg Arg Ile
450 455 460

Cys Ala Gly Lys Leu Ala Gly Met Val Phe Val Gln Tyr Phe Leu Gly
465 470 475 480

Thr Leu Leu His Ala Phe Asp Trp Arg Leu Pro Asp Gly Glu Glu Lys
485 490 495

Leu Asp Met Ser Glu Thr Phe Gly Leu Ala Leu Pro Lys Ala Val Pro
500 505 510

Leu Arg Ala Val Ala Thr Pro Arg Leu Val Pro Glu Ala Tyr Ala
515 520 525

<210> 4
<211> 5903
<212> DNA
<213> Sorghum bicolor

<400> 4

cccctacgat gtatatgtag ctggtctgaa aacggttaaa taaaaaagtaa agataacatc
60
gtccccgaca tttcgagttac acacgcccct acaccaata taaaaaccgct cgtgcctgcare
120
gaggcatctct tagttggtgc aggccctcct cccattgctag ctgcatcacgt aacgcacca
180
tgagctcgc cggggtttgatc aacgacccct cgtgcctcct cttggccctcc
240
tcctccacct cgccttcggg tccctgtcgc acacctttctc tgcgccctct tcctctggcc
300
gccgcgcggg cgccggcggg caccctccccg cggggcaccgc ggccctggcg atccctcgcc
360
cgcctccact cgtgccccct tggggccgatt ccggccctggc cgccgctggcg cgcaagctacg
420
gtcccatcat gtacttgtgaag atggtggcagc cgggtgtgtgt ggtgggtgtgc tccggctggc
480
cggggaagaac gttcctcaag gcgtggtgag cgaagtaocgc caaccggccg gcgggtggcga
540
gcggcgcgcca ctaacaagtc cggccgcgaga acatgtgtgtc cggggactac ggccccaagt
600
ggaagctgat ggcgaagctgc gcacagctgc gcctgcctcg ggccgcgccc gcgcgcgcactc
660
gcggcgtgctg gcggccgcac gcggccgcgc acctgcctcg gcggctgtgcc gcggcggccg
720
cgcgcgcgcgc gcgcgtctgc gtcgctggagc tgtcgttgtg gcgcgtctgc gcacagctgc
780
ccaggtcatac ccgctcagcgg cggtggtgagt acggcccaggg ggaattcata caaacgggtg
840
gatgctcaac agtcgtgctgat aatcctcatca acaagacaat gccctaatat atataaggca
900	

cgggggcccc ctacattcgg ccagccgtgac ctataaaatgc cgcgtcacgta caaatcggccg
960
tcggtgtcct taaatttgga tggatattttc aatatatattt gatggtgacc accatattgc
1020
ttgaaactcgat taaccttatgg gttgacggaa tataaatacatc cagggtgatg
1080
atgctggaag ccggggataa aaaaataaag gagaattgcgt gcgtcgtgcgg
1140
tacgtatgag aagacttgtag aatctggctag cagagctcct atgtgtgccccttgacgca
1200

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

260

270

280

290

300

310

320

330

340

350

360

370

380

390

400

410

420

430

440

450

460

470

480

490

500

510

520

530

540

550
gaaatgaag tgacggcat ttggttgtga cataggagct aagctaaagct aagctagtag 2220
cacccggacc taacggagca ctgacactga ccgaagcttc agcgtgttag gtgaacgcgc 2280
tagtggagtt gtgggaagaag caaatatcaaa atcacaactct cgaactctag agatgatgtg 2340
gggctgctag ggccggttttt gactcttcaca tgtggtggtgag cgcctcaagtc ttggttggg 2400
caaacattaac tagagcaaaa tatttgtcga acattaattg ctaacggtgg aagagatgaa 2460
tgcataata taacctgcag gcctagtttt tatgagaaga tgtctacttat atatatattt 2520
tagataacaa tagggatcac tagattttat tatctgcgca gagaacatac agaatttaatac 2580
cacccctaaat tcaccccgag tcctcttttc tcacgggtgga aatatattgt gggtaaactg 2640
acaaaaaagg catttggttc ctatacttttg tgtgaacata ttttaataat gttaggctat 2700
atagcataca gatcccaaca taaaataatct atcaataagc acataaagtag 2760
ttaaggaaa tctagaataa tgtgaacacc taactagctag aatctgtgatg ttttctctag 2820
atattaatttc ctacgaataag aacatataata tgtgaagggaa acatctcctc atcatatat 2880
gcaccaaaaa aaattctcata gtagcataaa tagtaaaca cgaaaatgtg tgggacaca 2940
gggactttatt taaccccaagc gaacaaaagc acttaaataa tatatacatttc gcagaagga 3000
tttagataatg atgtccagaa aaaactagaa aagttggggtc atagatatgc tagggaacct 3060
atccctaaag ggaatgagaa tgtatgaaaa tttactaacat tcaaatagc ttctaagaata 3120
aagaggtatt ctcttttcttg gaacaaaacaa aatactggaag tggcctcaaca gatctttattg 3180
agtgaaccttt tataagattt tatatttttt ttattatttt ttaagatggcg tgcaaaatca 3240
agtctaaatt attcatgtgaa agcctcgaga ttcttttaagg attaaaaaat agtgaagccg 3300
ttaagatatc atcagaaaaa cgatatggga ctcctgtcct ccaaacaacc ttgattatga 3360
cgtttagct taatgttctc ttggtagacgc tgtgatatat agggatgcca accgaaagga 3420
aaggggtgac gtttttacaa actgcacata tatgtttacca gaaactcagat agcagctttg 3480
taagtctctca gatgtttgga gtagttaaca aagtgtagaga cgtatgaaac ccttggacac 3540
gtttatattg cattttcctag aagaattgtga atcaaatctca ttaattaactc aacgaagaa 3600
ttgaaagctaa taatggctgt aagggcaactc ctggtgtgtga gttgtgtgtat taattatttg 3660
tgaatgtgct gtctagcacta acattataaa ggtcagttctc aatgcatagt ttcagcagac 3720
agttaccaag actataaatc aggtacccagc gccacaagag tttcatgggg agtaaacactcc 3780
tctctcatct gatgaacacgc cttcatttaa tgactctggc aactcgacaa tttggttttat 3840
gttggcactatatgttg catgcacactct ctcataacatc tgcattgaga cttggcctaaag 3900
ggggttggta gtggttggact cttttagactg tgtacttaggt ctaggatcgg tggggaattt 3960
aatctatttt ggataaaacc acataagatt tcaggtagtct agagaggaat ggaggacag 4020
aggatgtgtt atatactgaa ccatacctttt ggggttggcg gagaagcgcc tggctgagggc 4080
agtggcgcgtt gggaacctttc cgtgcctgcttc cgtgagctgc ttcctgatagg ctataggttta 4140
agtggggtct gccggcaattg tagcgggtgaa ccctgtgtaact tgtgctcttag cctccacacct 4200
cctccattata cactgcggcca caggggctctg gcacgcctaag tattgggcta gacgcgcgcgc 4260
atcaggggctt gtgccaggtt cccggccaagtt ctttgggacct tggccagtgg agatcaatctt 4320
aacacttaagt tccctcataa aatacaaaaag tcaactacttt tgtggaatgatg aatgtcaaaca 4380
tatcaaaaat ttgaggttaag atccgcatcctt ttatgctcctt cattatagcc 4440
tcttgagact ttttttgacct tttttggtcct ctggagggccta aaataaacaa tagagaataa 4500
ccacatgtttt gttaaataatt tttgcatagtt tttatatata ttaatataaaa taatataccca 4560
aaactcagaa tttttttgaga tggagaagggga actaaacacc cctgtgaatct atgtggcaca 4620
atgacgcctg gatgaggtttt cgtatagaaggg tgtggaaacac cttggtctcaaa 4680
cataacatcgc cattgacactc ctttttggagt cccgtggtggt gctgtggtggc ttggtgggtcc 4740
agctcttta acatataataa cataacactgt gcctgctgtcg gctgaggtttg tcaagtctatcc 4800
aaacacacta acaagctgcac cccacacctttt ctaataatgcgc agtctcaaat atataaccag 4860
catatatat atactagtgtt taacttaaac ccaaccccaact catatatataat tcaacttgcaac 4920
atacttcaaa accatgtata tatatctgct tgaaaaaaat tatagagatgt aataatgcttgg 4980
cgtgacgcgc cctgtgttcct tgtatgcaacg cagacgcacttg tctagcgcctc 5040
tctccttca ggcgtcagtt tggcgcaggg cagagatgcag tggaggtggc atgaagggagc 5100
cggcgccaggg atggagcgtg ggccgcggcc gcgcgctgga ggaggcgggc gcgcgagttccc 5160
tgcgcagccc tccccctctct gccgacgggt gcagctggtc gcaggacgctg gcacccggctc 5220
acgcgcgcctca gctgccctcct ctttccctccg gagcgtcctgct gcacgacggtc gcgggacgggc 5280
ggcacccggct tccccggccca cccgcgcgctt ctcatcacaaca ttctggccccagt ttgccgcggac 5340
cggcgccgctt ggaagaagcgc cctgaggttc cggcgccgacg tgtccttgocc ggggacgggc 5400
gcgcagacgg cgccgacggc ggggaactgc ttcagagctcc tcagctggtgg gcgcgcgaggg 5460
aggtcgctgg ccgggccagtct ggccgcgcgtg tggccagctca ccgcggctgg cggccacggc 5520
cgctgcacgctt tgcctgtgcag ctgggctggcc gcgcggagga agctggacat gacggacgc 5580
ttcggtcctgt cgcgtcagttt gcgcgctgctg ctcgcgcgctgc gcgcgcgcctgc aagccgcgcgg 5640
cgcggaacacct gcgctgctgtc cttgcgtgcctg tgcctttgtcg agcttgctgct gccttttctgc 5700
catacgtaca taacactgtta tgaatcctacact tgtcagcattg gttgcctagt acctacatttt 5760
gaattatat aagggacacttg ccgggtttccag tgggtgggtgt gcttcctggtc 5820
agaagagcgg aacactagtgt gttctttttta caatgcgctgta acactatata caagggactg 5880
tttgttttttc ctagactaaa att 5903
<210> 5
<211> DNA
<212> cDNA of SEQ ID NO: 4

<400> 5

atgaagctcg cgcggtttgtg cacogacccc gtgcgtgtctt cctgcccctt cctctgcctc 60
cacctccacc tcgctctccg gtcctctgtg cacccctctt tgcgcgcctc ttcctctgtg 120
cgcgcggccgg gcgcgcggcgc cacctcctccc cgggggccac cgggctcggc gatcctcggc 180
gcgcgctccac tcggctgcgc ggctccggat gccggctcgg gcgcgcgcgc gcggcagaac 240
ggtcccatca tgcactcagaa gatgggccagc acggggcgtcc tgcgctgcgc gtcgcgcggc 300
gcgccgaagag cgctcctcga ggcgcgtgag gcgaagattcg caaaccggcc gcggggtggcc 360
tagggccggcgc atacacgcga cgcccggccag acaacatgttg tocggcgcctg ccggggaaga 420
tggagctgga tgcggggaagc ccgcaacgcgc taccctgcgg ggccgcccgg gcgtgcgcggc 480
tgggggtgctg tgccggcgcgg cagggcgccgc cacctcgcgc gcgcgcggcc gcgagcgccg 540
gccgccggccgc gcgcgcggcg gtcggtcgcgt ctggcttgag agcgcggttc ccacatcgcg 600
gggcagacatcg ccgctcagacc gcggggcttc gacggcgcagg gggatgccct aaacagctac 660
aaggacatgca tcgtgcgtcgt gtctacg gccgcgctta gcggntcggct tcaacctcag ccgactctcg 720
ccggcgcgcgg ccggtctgagg cctggcaggg cttggcagcgg agcgccggcc gatccacggcg 780
cgggagacgc gcggcggagg gctcgccggcg gcccggcggcg ccgggcggccgc gcgcgggagg 840
gccgccaggg gcgcgcggagg gttccgcgtcc agggtcgggg gcggcagggg ccggcggggcc 900
gagcggcaga ccggcgagag atccagccga tgcgatccag gcgcgctcat ccgggcttcg 960
ttccagcggcg gcacgaggcac gtcggtctac agcctgtggagt gggcagattgc ggagatgttc 1020
aagaacccgt cccgtgatggc cggcggcggc gaggagttgg accggctgtgc ggcccgccgc 1080
cgcgcctcgg aggagtgccga ccggccacgc ccggctctacc tccggcctgg ctggaggccg 1140
gccatggcgc gcgcgcgctc gacgccgcgc actccctcttg gacgccttgcc 1200
gacgcacgag tcgcccggcc cggcagccgc gtccggcgcc ctccgggacct gcgtcatcaac 1260
atctggccca tccggcgggaa cccgccccg gtaagaagtc ccctggagtt cggcggccgg 1320
cggttcctgc cggcgcggcgg gcggcggagag gtgcaccggc gggtggacagc ctctgcggctc 1380
atccggcttc gcgcgccgctc gagagactgc gcggggaaggc tgccggggcat gtgggttgc 1440
cgtacttcc tggcaggcgtc gtcgacgcgc tcgactggac gcctgcggcc cggccgaggg 1500
aagctggcaca tcagcggacat gtcgcgccttc gcgtgcgtcct aagctggccgc gtcgcgcggc 1560
EP 3 560 330 B1

gtcgtcacgc caaggctctgt gccggaagcc tacegctag 1599

<210> 6
<211> 532
<212> PRT
<213> Sorghum bicolor

<400> 6
Met Lys Leu Ala Ala Leu Cys Thr Asp Pro Val Val Leu Ser Cys Ala
1  5  10  15

Phe Leu Cys Leu Leu Leu His Leu Ala Leu Arg Ser Leu Leu His Pro
20  25  30

Ser Ser Ala Ala Ser Ser Ser Gly Arg Arg Ala Gly Ala Gly Gly His
35  40  45

Leu Pro Pro Gly Pro Pro Gly Leu Pro Ile Leu Gly Ala Leu Pro Leu
50  55  60

Val Gly Pro Ala Pro His Ala Gly Leu Ala Ala Leu Ala Arg Lys Tyr
65  70  75  80

Gly Pro Ile Met Tyr Leu Lys Met Gly Thr Thr Gly Val Val Val Ala
85  90  95

Ser Ser Pro Cys Ala Ala Lys Thr Phe Leu Lys Ala Leu Asp Ala Lys
100  105  110

Tyr Ala Asn Arg Pro Ala Val Ala Ser Ala Ala Asp Ile Thr Tyr Arg
115  120  125

Arg Gln Asn Met Val Phe Ala Asp Tyr Gly Pro Lys Trp Lys Leu Met
130  135  140

Arg Lys Leu Ala Ser Val His Leu Leu Gly Ala Arg Ala Leu Ala Asp
145  150  155  160

Trp Ala Cys Val Arg Arg Asp Glu Ala Gly His Leu Leu Arg Gly Val
165  170  175

Ala Glu Ala Ala Ala Ala Arg Arg Pro Val Val Val Pro Glu Leu Leu
180  185  190

Val Cys Ala Leu Ala Asn Ile Val Gly Gln Ile Thr Val Ser Lys Arg
195  200  205

Val Phe Asp Ala Gln Gly Asp Asp Ser Asn Arg Tyr Lys Asp Met Ile

52
<table>
<thead>
<tr>
<th></th>
<th>210</th>
<th>215</th>
<th>220</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Val Ser Leu Leu Thr Gly Thr Gly Met Phe Asn Ile Ser Asp Phe Val</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Pro Ala Leu Ala Arg Leu Asp Leu Gln Gly Val Gln Ala Lys Leu Arg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Arg Ile His His Gln Phe Asp Gly Leu Ile Thr Lys Leu Leu Ala Glu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>His Ala Ala Thr Ala Ala Asp Arg Ala Arg Gln Gly Arg Gln Asp Phe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Val Asp Arg Leu Arg Ala Thr Met Asp Ala Gly Ala Asp Asp Glu Ser</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Gly Glu Thr Ile Thr Glu Val Asn Ile Lys Gly Leu Ile Phe Asp Met</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Phe Thr Ala Gly Thr Asp Thr Ser Ser Ile Ile Val Glu Trp Ala Met</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>Ala Glu Met Leu Asn Pro Ser Val Met Ala Arg Ala Gln Glu Glu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>Leu Asp Arg Val Val Gly Arg Gly Arg Leu Glu Glu Ser Asp Leu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>Pro Ser Leu Pro Tyr Leu Gln Ala Val Cys Lys Glu Ala Met Arg Leu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>His Pro Ser Thr Pro Leu Ser Leu Pro His Phe Ser Phe Asp Ala Cys</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Asp Asp Val Ala Ala Gly Gly Tyr Arg Val Pro Ala Asn Thr Arg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>Leu Leu Ile Asn Ile Trp Ala Ile Gly Arg Asp Pro Ala Ala Trp Lys</td>
<td></td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>Lys Pro Leu Glu Phe Arg Pro Glu Arg Phe Leu Pro Gly Gly Gly Ala</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>Glu Lys Val Asp Pro Met Gly Asn Cys Phe Glu Leu Ile Pro Phe Gly</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Ala Gly Arg Arg Ile Cys Ala Gly Lys Leu Ala Gly Met Val Phe Val
465 470 475 480

Gln Tyr Phe Leu Gly Thr Leu Leu His Ala Phe Asp Trp Ser Leu Pro
485 490 495

Asp Gly Glu Glu Lys Leu Asp Met Ser Glu Thr Phe Gly Leu Ala Leu
500 505 510

Pro Lys Ala Val Pro Leu Arg Ala Val Val Thr Pro Arg Leu Val Pro
515 520 525

Glu Ala Tyr Ala
530

<210> 7
<211> 3752
<212> DNA
<213> Sorghum bicolor

<400> 7
atatagcttg tctgagttcc gagtacgcag ccgcaggagc gcagcgtgct gcaggtgctgca
acgcctctac aggaatatata aagccgtcaac cagccagcagc ctttagcttg ggaggtcct
5
cctccctggc aacgcacaggt agcaagccac catcagcttc ggccggttgt gcgtcgaccc
ccctggtgctc tcctgtgcttc tctctcgtgct cctctctcact gcgtcgcctcc gcctctcggc
10
gccaccctctg tctcgccgccg ctctgggcccc gcgccgggccc caccaccagtc cccggcggg
cccaccggga ctaccgcatcc tgggocgcgct gccactgctgc ggcocagccc gcacgcccg
15
cctggcgcgct cttggccgcgct aagtcgggctc catcatgtac cttgaagatgg gcacgacggg
gtgctgtggct cctgcttcctgc ggcctggcgc gaggaggttc cccaagggcc tggacgcga
20
acgcacacac ccggccggggg tggcgcagccc ggcgccacac acgtacggtg gcctaacatc
acgcagtggc ccaagtggcct cggatgctgg aacgctgcact gcgtgacact
25
cgccgggggct cggccgtgctc ccggcgtggcg cgcctgctgg gcggagccgg gcgtgggtgc
ccctggcgct gctggtccgaggg ccgggctggccc ggtgctgcgtgc gcgccgtgtgct
30
acgcacacac ccggccggggg tggcgcagccc ggcgccacac acgtacggtg gcctaacatc
gtggcgcgcc ctggcacacac ccgggctggccc ggtgctgcgtgc gcgccgtgtgct
35
gtgcacacac ccggccggggg tggcgcagccc ggcgccacac acgtacggtg gcctaacatc
accatcaccg aggtcaacat caagggcctc atcttcgtta gctcgcttcc ctcacctcag
ctcatacat atatactcctt tcttttccttc cattgccttcc gttggtttaat caagtaaagt
aatgcattcc gtcgccgttaa ggaatgtaaga tcatcagcag ctagtaccga ctagaagaaga
aagttaactga gaattctttgg tctaaataaata ggcattgtttt aagttcggaaa aaatttttacc
aaaaatatta gcgcttaaat tataatttgg ggcatataa tggagattta aagataaaaa
ataaaaaatt aattacataag tttgctcgtta attttatagga cgaacccattta aacccagttta
gttttataatt ggacaaatttc tgtcgaaaaataa aaaaaaattt gctaccattt ctaaatttcc
aaaaattttgt caactgaaaca aggcctttaga tgcatattag ggccattttgg tttcgaatagt
taaagtattat cgctgacaccc atcgtaatttt tagtacactc gcataagatta ctaaatattag
actattttag aaactaaaaaa cacaacgttaga gagaattttgg cgagaattgat attttttaacc
taattaattct atattaatttg aataataggatat aaatatttac aaccccaacca
agcacccccct tacgtctcgcg cgtgtggtttgc gcacggacag ccagtttaggt ggaactagtgg
gttgttggaa aagtcgcagac gccacgcaagc cacacacattag ctcagcgtctag tatttttggtt
ttatgtcaata aacctacccgct tagggcccttg cagtctctgat ctgttttctgc atgactcaag
gttgatactgg tagctgtgattttctttgtg gccaaattgag cagactagact aaataatattg
ctaataatgtt gataacctttt ggtaccgtgga atgtgaataa atacactcaccg gtgtgctgcat
gggtgttcctc aaaaatcatgt tttttttttaa aaccccatcaa ttttaaattt caagacacattt
tgactttttctg agataaattg atttttctat gatctttagat atagttgctata cttaaatattg
ntagtaatatag tacatatatt taaaaaatgcta aaacattaata taattagata agggggagta
tataattaaa agaagattact gttttatagt gatatttccttc aagttacagt cacatcagacta
atgcaccggag accattctcaa aacctcaacac atgttgcataa gatctaaattgt tcttggaacca
aaatatattg aactgaattac gcagttggaac ttcttggtgtc gataccaatttg cgccattttttc
tagacttactg accattgac catcaaggttg gacagcttgcg ttcttcgctcag tctcacaatgg
tgacgcacaat gaacctggattta tactactctt acggagtattt actctgcctctg gcaacaaggt
agacctatcg tggctcatgga aataagcata tagacaatgtt agggttttttc tagaataact
actaatagaa ataagataag attgattacat atcacaacgac tgcgaggatct acctattttgc
ptaattgtaa accttttacct caaaaacactg aagtaatctgg tgcctcattta atttttttccc
tccatcacaat tggggtagctc cagacgatctc aggacagtgg cacgggaggg aagcagacacat
tcgcagatcat cgtggagttgg gcgtattctcctaatgcacgacgcc gccacctgtgcc aagtcggacac
agcgccagag ggagctggac cgcaagctcgc ggcgcggccgg cggctcggaa aagtcggacc
tgccccagcct ccccctaccttg cagggcttgc gaagggggc acatgcgggtgc acaccggtcag
cgcgcgtcag cctccgcgcac ttctcttcag acgcctgcga cgcacgtgcgc ggccgctacc 3060
gcgtcccgcc caaaccggcg ctgctcatca acgtctgccc catcggccgg gacccggcga 3120
cgctggagggc ggcccctcag aagcgtctcct gcccgggggc gcggcggaga 3180
aggtcgaccc gatggggaaac tacetccgcag tcatcccccc tgggcgccgg cgggagatct 3240
gcgcggggaa gctggccggcc atggtgttcg tgcagtaactt cctgggcaag ctgctgcaag 3300
cgattcaactg gcgcctcgcgc gacgcggaggg acgtggacat gcgcgagacg ttcggtgctca 3360
cgtctgctaa ggccgtaccc ttcgggcgca ttgtaacgcc ggcgcctctg cgggaagcct 3420
atgtggtgagt tagttgctac ttgtaagctt cagttccggcc tggggaagga tgtgcggag 3480
gtgttggttc gcacaactgc atacatattc tggagttaatg tttttagtata gaaactacat 3540
ggtattcact atatacaca acgcacactc ctttatgctt aatgcaagg catttgatat 3600
ggaaaaatgcc cctttggattc aataagttta caactactga tctttagtaaa caaatgatta 3660
ttcgggtcca ttataatgaa ccctttacagg cagttttgta agacccctca tgtgcttcaa 3720
cctcatagcag taagcgctca ttgggcttga tc 3752

<210> 8
<211> 1584
<212> DNA
<213> Artificial Sequence

<220>
<223> cDNA of SEQ ID NO: 7

<400> 8
atgcagctcgc cgcgttttgtc cctgaccccc tctgtgctct ccttcgacccct cctcttgcttct 60
ctccctcaccg tccgtcctcgc cttctctgctt cacctctcttc ctgcctccttc ctccgcccgc 120
cgcgggcgcc accaccagctt ccacgccggg gccacgcggacct taccgatctct cgcgggcttg 180
ccactgggcc gcggaggggc gtcgccgccc ggccgggcta ctcgctggcct ttggccggctcc 240
atgcaggtac tgaagatggtgcc gcagacctccg gcctgggctgc gtcctgggccgc tgcggctcggc 300
agagctggggc tcaagccgcgtt gagaogccagct taccgcaaccc ggcgggctcc gcggagcgcc 360
gccgacactca cgataccggtg ccaagacacttg gttgctcgaact actacgggcc caagtggagc 420
cgtcatgcggag aagtgcgggact gtcgtccaccgc ctcgctgggctgc ggcggctgagc gagctctggc 480
ccctggcgggc ggcagcgggcc cggcagcttcg ctcgcgggcgg tggcgggggct ggcgggccggc 540
cggcgccccg cggccgctgag cggccgctgag tggcgggctgag cggccgctgag cggccgctgag 600
atcagctgta ctaacgctggt gttcgcagcag cagcccccgac aacgtgggacc actcagcacag ctgctgggcc 660
atgcagctggt cactctgtag cgctggggat cggccgctgta ctcgctgcgtcg cgcctgggccgg 720
tggcgcgcttc tggagctgca cggctgctgag cgcagctgag tggctgactcg cccacagcttc 780
gacgcccctca tcaacagctt ctcggcctag cagcgcgctg ccggccgctgg ccggccgctg 840
gacgcccggc cggacgctcgc cggccgcccc gttgacgccc gctgaacgcgc 900
gagacgcggcg agacacctcgc ccggccgagct taccgctccttcc cgcctgggctc ccggccgagcc 960
gcgctgccgcc cgcctgacgct gcctgacgct ccgcctgcttc ctcgctgacgc ccgcctgctgc 1020
ctggacgctca tggccagagcgc ccgagggagg ctcggccagcg ccggccgctgc ccggccgctgc 1080
cggctggcctc cggcctcgtc cggctgctcc ctcgctgaggg gaggccctgc 1140
cggctgcacc gcggctccggc gtcctgacgcc ctgctgcgcct cgcctgagcgc ccggccgctgc 1200
gtcggcggcg ccggccgtaa cggcgaagctt ccggccggtcc ctcgctgacgc ccggccgctgc 1260
gccgggacc ccggccaggtg gcggccgctc ctcgctgacgc ccggccgctgc ccggccgctgc 1320
ggggccgggg cggagactgct gcacccgatgg ggggactacgc tgcagctcata gccctgctgc 1380
ggcggccgagg gctacgctgc cgggagagtg ggccggctgctt gttctgcggt gacagcgctgc 1440
ggcagctgcgc ccacgtgctcg ccggccgaggg ccggccgctgc ccggccgctgc ccggccgctgc 1500
ccggctgctgc gcctgggctgc gcctgggctgc gcctgggctgc gcctgggctgc gcctgggctgc 1560
ctccctgctggg cagccctacct gcctgctgctgc gcctgggctgc gcctgggctgc gcctgggctgc 1584

58

<210> 9
<211> 527
<212> PRT
<213> Sorghum bicolor

<400> 9
Met Gln Leu Ala Ala Leu Cys Ile Asp Pro Leu Val Leu Ser Cys Ala
1    5    10    15

Phe Leu Cys Leu Leu Leu His Val Ala Leu Arg Ser Leu Leu His Pro
20   25   30

Ser Ser Ala Ser Ser Ser Gly Arg Arg Gly Gly His His Gln Leu Pro
35   40   45

Pro Gly Pro Pro Gly Leu Pro Ile Leu Gly Ala Leu Pro Leu Val Gly
50   55   60

Pro Ala Pro His Ala Gly Leu Ala Ala Leu Ala Arg Lys Tyr Gly Pro
65   70   75   80

Ile Met Tyr Leu Lys Met Gly Thr Thr Gly Val Val Val Ala Ser Ser
85   90

Pro Gly Ala Ala Arg Thr Phe Leu Lys Ala Leu Asp Ala Lys Tyr Ala
100  105  110
<table>
<thead>
<tr>
<th>Position</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>115</td>
<td>Asn Arg Pro Ala Val Ala Ser Ala Ala Asp Ile Thr Tyr Gly Cys Gln</td>
</tr>
<tr>
<td>130</td>
<td>Asn Met Val Phe Ala Asn Tyr Gly Pro Lys Trp Lys Leu Met Arg Lys</td>
</tr>
<tr>
<td>145</td>
<td>Leu Ala Ser Val His Leu Leu Gly Ala Arg Ala Leu Ala Asp Trp Ala</td>
</tr>
<tr>
<td>150</td>
<td>His Val Arg Arg Asp Glu Ala Gly His Leu Leu Arg Gly Val Ala Glu</td>
</tr>
<tr>
<td>180</td>
<td>Ala Ala Ala Ala Arg Arg Pro Val Val Val Pro Glu Val Leu Val Cys</td>
</tr>
<tr>
<td>185</td>
<td>Ala Leu Ala Asn Ile Val Gly Gln Ile Thr Val Ser Lys Arg Val Phe</td>
</tr>
<tr>
<td>195</td>
<td>Asp Ala Gln Gly Asp Glu Ser Asn Arg Tyr Lys Asp Met Ile Val Ser</td>
</tr>
<tr>
<td>225</td>
<td>Leu Leu Thr Gly Ala Gly Leu Phe Asn Ile Ser Asp Phe Val Pro Ala</td>
</tr>
<tr>
<td>245</td>
<td>Leu Ala Arg Leu Asp Leu Gln Gly Val Gln Ala Lys Leu Arg Arg Val</td>
</tr>
<tr>
<td>260</td>
<td>His His Gln Phe Asp Gly Leu Ile Thr Lys Leu Leu Ala Glu His Ala</td>
</tr>
<tr>
<td>275</td>
<td>Ala Thr Ala Ala Asp Arg Ala Arg Asp Gly Arg Gln Asp Phe Val Asp</td>
</tr>
<tr>
<td>290</td>
<td>Arg Leu Arg Ala Ala Ile Asp Ala Gly Ala Asp Asp Glu Ser Gly Glu</td>
</tr>
<tr>
<td>305</td>
<td>Thr Ile Thr Glu Val Asn Ile Lys Gly Leu Ile Phe Asp Met Phe Thr</td>
</tr>
<tr>
<td>325</td>
<td>Ala Gly Thr Asp Thr Ser Ser Ile Ile Val Glu Trp Ala Met Ser Glu</td>
</tr>
<tr>
<td>340</td>
<td>Met Leu Lys Asn Pro Pro Val Met Ala Arg Ala Gln Glu Glu Leu Asp</td>
</tr>
<tr>
<td>355</td>
<td>Arg Thr Val Gly Arg Gly Arg Leu Glu Glu Ser Asp Leu Pro Ser</td>
</tr>
</tbody>
</table>
Leu Pro Tyr Leu Gln Ala Val Cys Lys Glu Ala Met Arg Leu His Pro
370 375 380

Ser Thr Pro Leu Ser Leu Pro His Phe Ser Phe Asp Ala Cys Asp Asp
385 390 395 400

Val Gly Gly Gly Tyr Arg Val Pro Ala Asn Thr Arg Leu Leu Ile Asn
405 410 415

Val Trp Ala Ile Gly Arg Asp Pro Ala Thr Trp Glu Ala Pro Leu Glu
420 425 430

Phe Arg Pro Glu Arg Phe Leu Pro Gly Ala Ala Ala Glu Lys Val Asp
435 440 445

Pro Met Gly Asn Tyr Phe Glu Leu Ile Pro Phe Gly Ala Gly Arg Arg
450 455 460

Ile Cys Ala Gly Lys Leu Ala Gly Met Val Phe Val Gln Tyr Phe Leu
465 470 475 480

Gly Thr Leu Leu His Ala Phe Asn Trp Arg Leu Ala Asp Gly Glu Glu
485 490 495

Leu Asp Met Arg Glu Thr Phe Gly Leu Thr Leu Pro Lys Ala Val Pro
500 505 510

Leu Arg Ala Ile Val Thr Pro Arg Leu Leu Pro Glu Ala Tyr Ala
515 520 525

<210> 10
<211> 187
<212> DNA
<213> Zea mays

<400> 10

c ttctgcccc gaagcgggcc cagacattttg agattgggta ttcaaaatt caaagatta 60
a gaattttag tgttctacg ctatatattg caatacatta ttgacaattt agttttctaa 120
cactatagat caccaaaaaat atggtttacc aatgaatacc catgaaaacc ccttgggccc 180
gcccatg 187

<210> 11
<211> 4402
<212> DNA
<213> Zea mays

<400> 11
atgcagctcg cggcgttgtg caccgacccc gtggtgcgtg gcagcgcctt cctctgcctc
ctcctccagc tggtctctcg  ctcgtctgctg  caacctctctt  ccggcagaga  gggggggcag  120
acatttgaga ttgggtttcc  aaaaattcata  aagattaag  aatttagttg  tcttaacgcta  180
ttttatgcaa taattattac  acaaatgg  gttgcttaa  tatagatcac  caaaaaatag  240
gtttaactca  gtaaactctc  gaaaccccccc  tgggccccggg  cctgcttctgg  cggcctcttc  300
ccgaggccgc cggcggagccg  tcggccgcgg  gggggagggc  ggttggctgtc  cggccttgcct  360
gcggcaggtgt  ggccagccggc  cgccccgccg  ccggcgccgg  ctcgggagca  agtacggttcc  420
catgctctac  ctcgaagatgg  gcacggcgccg  ctggctggttg  gcgtctgccc  cgccgcccggc  480
ggcggacgctc  ccgtagccgcg  tggcggcggg  gatagccacac  ggggggagcc  tggcggagcc  540
cggcggacatc  acgtacgggc  ggcagagatcc  ggtgtcctgg  gactacgggc  ccaagtggaga  600
gtggatggg  aagatggcgg  gggggtgctc  gctggggtgg  cggggtgtgg  ggacggctga  660
gtggcgggtggc  cggcggaggg  cggggcagtcg  ctggcggcggc  ggaggtggggg  cggcgggccc  720
ggctgcagcccc  ctcggtctgcg  ggaggtgcggc  ctcggtcgggc  ctcgcctgcctc  cgccgagcagc  780
gtcgagacggc  ggttgaggtgg  tcggtggcggc  cggaggggac  gactcgaaca  ggtgagagatg  840
ggaggtctcct  gaaatcctac  cagctgtggag  cagctcaatgg  agttttcttt  gaaagaaaaa  900
aacatattttt  ttcttcaaat  ttatagctaat  tgttttttaa  agttttgatatt  aatattttta  960
aaaaattta  ggctagtttgc  aacatccatt  ttagatctttct  attttcctaa  gaaaaataaa  1020
cgaaatttttc  ttcggaaaaat  gaatctttata  ttatataataa  gttttctcaaa  ctcggccttca  1080
ataaaactta  atcgagctgct  ttctctctgtt  cttctcttcgt  ttcttttcata  ttggaaaaagac  1140
atggctcctgtga  gatagatgttc  taccctgcggt  tcttttatag  ttgaaagac  aacatatcttg  1200
atggacatgg  aacattgggtg  cacattggctc  acatatggaa  tcacatccac  tcacattttaa  1260
ttaaactgctc  atagttttgt  gatataatat  ataaagcaca  ccccttcaacg  tgggtgtgttg  1320
tagttgggtgag  agttttatat  tgtataaatgg  ataataactc  agagatgtta  gatcctaaat  1380
agttttgtgtgat  gatttaatat  tgacgctttggt  tgcacgttgc  ttctatgtgc  accagatatg  1440
tcctttgatat  caaatggctag  accgacactc  actagcaact  agcagactgt  tatggtggaa  1500
agaaaaaact  taataagact  agctaggaag  ctgtctgcttcc  ctgtagccatg  atatggtgaa  1560
gacatgcaac  tctgctgtga  aagacaactct  tagctttttaa  gcgaagaaaatg  cgatggaaac  1620
ggggctcttgaa  taataaataata  ttagagttcttc  tgggggttgtc  cttacgatgga  aaaaaaaca  1680
ctctttttc  taatatatatat  atggcagcata  acagttgattc  catatgtgtatc  gcaagataaa  1740
ggacagtac  gtgtgtggctc  tgacggccggc  gggtgcgtttc  aacataagctgg  actctgtggc  1800
ggggctctggcctc  cttagggcttgc  gccaggggaag  ctcgctggtgc  tcggggcgcggc  tccaccgcaca  1860
gtttgacggc  ctcacacacca  agctgctggttc  cgggcaacgcc  gcacgcggcgcg  cgaggcgcgcg  1920
gggccagggc cgcccgagct tcgctgaccg gctccgggcc acgatggacg ccggccggcc
1980
cgcgacgac gagagcgccg agacccatca cgaggtcaac atcaaggccc tcatctctcggt
2040
aagctcctgt tttttccttc gcccccaacc atgcatcata atatgcactt atatattnaca
2100
cctgctcgggt ttctcttttag taactaacta atgcgcgca taacgcgatc acgtagcact
2160
agtcatacg cgatgggctca tcgtgtaactg aatcataagg tcacatagagc gcagggccgc
2220
gggatcatgg cgtgacatgg gacgtaagct gacgccagtg ccaccttaacg aagcgaattga
2280
cggaaacgctc aggccggtgtg taagttggagaa taggtggaagcagttgttggg aagacacatat
2340
caaaaccacct ctcacataatg cgtatggtgag gcaccgtcgatg ttttgaaatctc caacccgc
2400
ggtgaaacac attactagag tgaataatgg ttccaatgtt aatgtgatgc gcgaagggtt
2460
ccttcatgtaa atgtttaaacc cttcccgagta gcacatccag gttgggttgcg atccctctga
2520
gggccatta tcacgctttgg taaaatcttat tcgcttggtg tcggccgtcctc gcctcaggg
2580
attgatattc taacgcagac cctccgcacta gtcgacagttg attgacgctgt tagtgatgag
2640
aagcccatgc gaaaaatggc agacgctagat atgatagag gttcccttcttc taaagcaacgc
2700
tgaattccat cgaattattgc cagttttaaa aaaaattttaa agataaagcg aatttctcctt
2760
tttttgaaaa aacaatacga atgcacccccc aataatctta tcggatcgac tttttatgaa
2820
ttatatgttc tttttttttt aagttgggac cccccatca cttacaaattt attcagttgaa
2880
tgctcctggtg tttttttatt agttaagggc tcttcatttttt tccacaggat ttatatatttt
2940
tcctcaggag aataaaactta atctcttatta gaaaaatggga aatctataggg aagaatagg
3000
ttctctaaact agctcttacaag tgcagtctgat taatcaggag aagatattag actctctgtat
3060
agtgtgccgc acccaccacct gattctgacgc ttctagctta atgttgcgcta tgcgacagtc
3120
gggcataaggg aatcgtatgc tccacacaagc caaatgcagag ctatgcagct ctcctgaaacg
3180
ttgagatagt ttacaaaccgct gatagatatga aacctctggat ctatgtatag tgcctatctcc
3240
tagactgaa gattttttag tcacatcgcag caaagtcccc caagcactct gggcttcctcga
3300
cacaggtgata cccaagctgc tggaaagacc tggagggccg taaaatgttc ggtggttgggtg
3360	taaacagca aagatgtcga aaataactca tcggcatcct cccgctaatc aacccccttcgc
3420
acaactgtac caaatccttc gcataaattta caggaataat taaggccgctt agagcatatgat
3480
aaaacctcttt tctgtcactta ttaaacaccac tggcttttgc ttggccgtgaa caaaaaaaat
3540
cttttttcgtg aagcagtgtt gccgtaaaac acacaactcta tgaactacat gcctctctgctca
3600	tagtacattt gaccacgata gcggcgccccg taagacaattg caccacccct caagtttttag
3660
tcactgata ccgcaattata agttagatga tgtgctgatac tagttgtgctt acttccgaacct
3720
attttttttg gcggaaactga agttaagaca acgtttttgtt cccgaggacacc tgtttcagggc
3780
gggtagccgac acgtcgctgca tcagctgaggta gttgggcagtt gcggagatgc ctaagaaacc
3840
EP 3 560 330 B1

3560330B1

65

<210> 12
<211> 387
<212> DNA
<213> Zea mays

<220>
<221> misc_feature
<222> (101)···(287)
<223> insertion of 187 nucleotides as present in QTL line

<400> 12

acccatiec tccgatccgtt gtgcacaggac cccgtgcttc tttctctgtc 60
tttctctcc acgttgctctt cccgtgcttc tttctcgccca gaagccggcc 120
cagacatgg agatctggta ttcacaattt caaaagatta aagaatttag tggcttaaag 180
tatatatatg caataacattt tggacaattt agtgtttctaa cactatagat cacaaaaac 240
atgggttttc aatgaattac catgaaacc cccctggggcc gcccagcttc ctggccgccctc 300
tttctctgcc cggccgctggc agctctccgcc ggcccacgca tctctggcgcc 360
gtggccacctt tgggcccag cccpgca 387

<210> 13
<211> 201
<212> DNA
<213> Zea mays

<220>
<221> misc_feature
<222> (101)···(101)
<223> single nucleotide polymorphism

<400> 13
EP 3 560 330 B1

tgatgaaagc cgtgcaggag taaatagrra amtggagttg tggcgtgara cctctagactc 60
caaacgttttt agactctttta gaacttaaaac cgaatatata wgttgtgact ttggcactac 120
tacatatgac gaaggagata tgttgggga aggtaagta tgtccctgara aggaaccttt 180
ttgatattta gtatcaatgc t 201

<210> 14
<211> 121
<212> DNA
<213> Zea mays

<220>
<221> misc_feature
<222> (58).(58)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (61).(61)
<223> single nucleotide polymorphism

<400> 14

caaggaacctt agatggggg cggattcatt aacaagggag gggccctaa tccctgncg 60
rtctgcacgg gcataatct agtcagaccc cgagtcagt agaggccgag gacggtcac 120
g 121

<210> 15
<211> 121
<212> DNA
<213> Zea mays

<220>
<221> misc_feature
<222> (61).(61)
<223> single nucleotide polymorphism

<400> 15

cagcacatat tggttgaaa tgaatgagca cactgcattt atacaccac cgggtcct 60
rggcatagtt taagtcagt aatgtatgtg cgcaccggagc aaggtatcttt gacacacata 120
a 121

<210> 16
<211> 101
<212> DNA
<213> Zea mays

<220>
<221> misc_feature
<222> (51).(51)
A method for identifying a maize plant or plant part from maize having improved digestibility comprising

a) screening for the presence of a QTL allele, such as a QTL allele associated with improved digestibility, said QTL allele comprising a nucleotide sequence of a gene encoding a cytochrome P450 flavonoid 3',5'-hydroxylase (F35H), having a mutation leading to reduced or absent expression of the mRNA of the gene and/or the F35H protein (such as a knock-down or knock-out mutation), or a mutation leading to a non-functional F35H protein (e.g., truncated F35H protein) or an F35H protein having reduced enzymatic activity upon translation, or
b) screening for reduced or absent expression of the mRNA of a gene encoding a cytochrome P450 flavonoid 3',5'-hydroxylase (F35H) and/or the F35H protein or for a non-functional F35H protein (e.g., truncated F35H protein) or an F35H protein having reduced enzymatic activity, or
c) screening for the presence of a mutation leading to reduced or absent expression of the mRNA of a gene encoding a cytochrome P450 flavonoid 3',5'-hydroxylase (F35H) and/or the F35H protein, or a mutation leading to a non-functional F35H protein or an F35H protein having reduced enzymatic activity upon translation; wherein improved digestibility relates to increased digestibility of the maize plant or plant part from maize having the characteristic of a), b) or c) compared to a maize plant or plant part from maize not having such characteristic; and
wherein the unmutated F35H is selected from the group consisting of:

(i) a nucleotide sequence comprising the sequence of SEQ ID NO: 1;
(ii) a nucleotide sequence having the cDNA of SEQ ID NO: 2;
(iii) a nucleotide sequence encoding for an amino acid sequence having the amino acid sequence of SEQ ID NO: 3;
(iv) a nucleotide sequence having at least 80% identity to the sequence of SEQ ID NO: 1, or 2;
(v) a nucleotide sequence encoding for a polypeptide having at least 80% identity to the sequence of SEQ ID NO: 3;
(vi) a nucleotide sequence hybridizing with the reverse complement of a nucleotide sequence as defined in (i), (ii) or (iii) under stringent hybridization conditions.

2. The method according to claim 1, wherein the method comprising screening for the presence of the molecular marker allele of ma61134xxx and/or one or more molecular marker alleles located in a chromosomal interval on chromosome 9 flanked by marker alleles ma61070s01 and ma30168s02, preferably by marker alleles ma50827s01 and ma16983s02, more preferably by marker alleles ma17117s01 and ma61125s01;

wherein ma61134xxx is an insertion of one or more nucleotides between position 134254381 and 134254382 of chromosome 9 referenced to line PH207, preferably an insertion as set forth in SEQ ID NO: 12; and
ma61070s01 is a single nucleotide polymorphism (SNP) at position 121588825 of chromosome 9 referenced to line PH207, wherein said nucleotide is A or T, preferably a single nucleotide polymorphism (SNP) as set forth in SEQ ID NO: 13; and
ma30168s02 is a single nucleotide polymorphism (SNP) at position 139452428 of chromosome 9 referenced to line PH207, wherein said nucleotide is A or G, preferably a single nucleotide polymorphism (SNP) as set forth in SEQ ID NO: 14; and
ma50827s01 is a single nucleotide polymorphism (SNP) at position 127454426 of chromosome 9 referenced to line PH207, wherein said nucleotide is A or G, preferably a single nucleotide polymorphism (SNP) as set forth in SEQ ID NO: 15; and
ma16983s02 is a single nucleotide polymorphism (SNP) at position 137363784 of chromosome 9 referenced to line PH207, wherein said nucleotide is A or G, preferably a single nucleotide polymorphism (SNP) as set forth in SEQ ID NO: 16; and
ma17117s01 is a single nucleotide polymorphism (SNP) at position 132038900 of chromosome 9 referenced to line PH207, wherein said nucleotide is A or G, preferably a single nucleotide polymorphism (SNP) as set forth in SEQ ID NO: 17; and
ma61125s01 is a single nucleotide polymorphism (SNP) at position 135947973 of chromosome 9 referenced to line PH207, wherein said nucleotide is A or G, preferably a single nucleotide polymorphism (SNP) as set forth in SEQ ID NO: 18.

3. A maize plant or plant part from maize having improved digestibility comprising

a) a QTL allele associated with improved digestibility, said QTL allele comprising a nucleotide sequence of a gene encoding a cytochrome P450 flavonoid 3',5'-hydroxylase (F35H), having a mutation leading to reduced or absent expression of the mRNA of the gene and/or the F35H protein, or a mutation leading to a non-functional F35H protein or an F35H protein having reduced enzymatic activity upon translation; or
b) a nucleotide sequence of a gene encoding a cytochrome P450 flavonoid 3',5'-hydroxylase (F35H), having a mutation leading to reduced or absent expression of the mRNA of the gene and/or the F35H protein, or a mutation leading to a non-functional F35H protein or an F35H protein having reduced enzymatic activity upon translation; or
c) a nucleotide sequence of a gene encoding a cytochrome P450 flavonoid 3',5'-hydroxylase (F35H) having
reduced or absent expression of the mRNA of the gene and/or the F35H protein or having reduced enzymatic activity; or
d) an RNAi molecule directed against, targeting, or hybridizing with a nucleotide sequence encoding an F35H protein, or comprising a polynucleotide sequence encoding an RNAi molecule directed against, targeting, or hybridizing with a nucleotide sequence encoding an F35H protein; or
e) an RNA-specific CRISPR/Cas system directed against or targeting a nucleotide sequence encoding a cytochrome P450 flavonoid 3',5'-hydroxylase (F35H) or one or more polynucleotide sequence(s) encoding said RNA-specific CRISPR/Cas system;

wherein improved digestibility relates to increased digestibility of the maize plant or plant part from maize having the characteristic of a), b), c), d) or e) compared to a maize plant or plant part from maize not having such characteristic, and

wherein the unmutated F35H is selected from the group consisting of:

(i) a nucleotide sequence comprising the sequence of SEQ ID NO: 1;
(ii) a nucleotide sequence having the cDNA of SEQ ID NO: 2;
(iii) a nucleotide sequence encoding for an amino acid sequence having the amino acid sequence of SEQ ID NO: 3;
(iv) a nucleotide sequence having at least 80% identity to the sequence of SEQ ID NO: 1, or 2;
(v) a nucleotide sequence encoding for a polypeptide having at least 80% identity to the sequence of SEQ ID NO: 3; and
(vi) a nucleotide sequence hybridizing with the reverse complement of a nucleotide sequence as defined in (i), (ii) or (iii) under stringent hybridization conditions;

wherein the maize plant or plant part from maize is not exclusively obtained by means of an essentially biological process.

4. The maize plant or plant part from maize according to claim 3, wherein said maize plant comprises the marker allele of ma61134xxx;

wherein ma61134xxx is an insertion of one or more nucleotides between position 134254381 and 134254382 of chromosome 9 referenced to line PH207, preferably an insertion as set forth in SEQ ID NO: 12.

5. The maize plant or plant part from maize according to claim 3 or 4, wherein said maize plant comprises said QTL allele, said marker alleles, said nucleotide sequence of the gene encoding the cytochrome P450 flavonoid 3',5'-hydroxylase (F35H) having the mutation, said RNAi molecule or said polynucleotide sequence encoding the RNAi molecule, said RNA-specific CRISPR/Cas system and/or said one or more polynucleotide sequence(s) encoding the RNA-specific CRISPR/Cas system as transgene or as (gene-) edited endogene.

6. A method for improving digestibility of a maize plant or plant part from maize, comprising introducing through stable or transient integration by means of transformation, insertion using gene editing technology or modification using random or targeted mutagenesis into the genome of the plant or plant part

(a) a nucleotide sequence of a gene encoding a cytochrome P450 flavonoid 3',5'-hydroxylase (F35H), having a mutation leading to reduced or absent expression of the mRNA of the gene and/or the F35H protein, or a mutation leading to a non-functional F35H protein or an F35H protein having reduced enzymatic activity upon translation, or
said method comprising
(b) reducing expression of the mRNA of a gene encoding a cytochrome P450 flavonoid 3',5'-hydroxylase (F35H) and/or the F35H protein, or reducing the enzymatic activity of a cytochrome P450 flavonoid 3',5'-hydroxylase (F35H);

wherein improved digestibility relates to increased digestibility of maize plant or plant part from maize having the characteristic of a) or b) compared to a maize plant or plant part from maize not having such characteristic, and

wherein the unmutated F35H is selected from the group consisting of:

(i) a nucleotide sequence comprising the sequence of SEQ ID NO: 1, 4, or 7;
(ii) a nucleotide sequence having the cDNA of SEQ ID NO: 2, 5, or 8;
(iii) a nucleotide sequence encoding for an amino acid sequence having the amino acid sequence of SEQ ID NO: 3, 6, or 9;
(iv) a nucleotide sequence having at least 80% identity to the sequence of SEQ ID NO: 1, 2, 4, 5, 7, or 8;
(v) a nucleotide sequence encoding for a polypeptide having at least 80% identity to the sequence of SEQ ID NO: 3, 6, or 9; and
(vi) a nucleotide sequence hybridizing with the reverse complement of a nucleotide sequence as defined in (i), (ii) or (iii) under stringent hybridization conditions.

7. **The method according to claim 6 (b), comprising**

(a) introducing into a nucleotide sequence of an endogenous gene encoding the cytochrome P450 flavonoid 3',5'-hydroxylase (F35H) a mutation leading to reduced or absent expression of the mRNA of the gene and/or the F35H protein, or a mutation leading to a non-functional F35H protein or an F35H protein having reduced enzymatic activity upon translation, or
(b) introducing into the plant or the plant part an RNAi molecule directed against, targeting, or hybridizing with a nucleotide sequence encoding the F35H protein, or a polynucleotide sequence encoding an RNAi molecule directed against, targeting, or hybridizing with a nucleotide sequence encoding the F35H protein, or
(c) introducing into the plant or the plant part an RNA-specific CRISPR/Cas system directed against or targeting a nucleotide sequence encoding the F35H protein, or one or more polynucleotide sequence(s) encoding said RNA-specific CRISPR/Cas system, or
(d) introducing into the plant or the plant part a chemical compound or an antibody reducing or inhibiting the enzymatic activity of the F35H protein upon interaction with said F35H.

8. **A method for producing a maize plant or plant part from maize having improved digestibility, comprising**

(a) introducing through stable or transient integration by means of transformation, insertion using gene editing technology or modification using random or targeted mutagenesis into the genome of a plant or plant part a nucleotide sequence of a gene encoding a cytochrome P450 flavonoid 3',5'-hydroxylase (F35H), having a mutation leading to reduced or absent expression of the mRNA of the gene and/or the F35H protein, or a mutation leading to a non-functional F35H protein or an F35H protein having reduced enzymatic activity upon translation, or
(b) introducing through modification using random or targeted mutagenesis into a nucleotide sequence of an endogenous gene encoding the cytochrome P450 flavonoid 3',5'-hydroxylase (F35H) a mutation leading to reduced or absent expression of the mRNA of the gene and/or the F35H protein, or a mutation leading to a non-functional F35H protein or an F35H protein having reduced enzymatic activity upon translation, or
(c) introducing through stable or transient integration by means of transformation or insertion using gene editing technology into the plant or the plant part an RNAi molecule directed against, targeting, or hybridizing with a nucleotide sequence encoding the F35H protein, or a polynucleotide sequence encoding an RNAi molecule directed against, targeting, or hybridizing with a nucleotide sequence encoding the F35H protein, or
(d) introducing through stable or transient integration by means of transformation or insertion using gene editing technology into the plant or the plant part an RNA-specific CRISPR/Cas system directed against or targeting a nucleotide sequence encoding the F35H protein, or one or more polynucleotide sequence(s) encoding said RNA-specific CRISPR/Cas system, or
(e) introducing into the plant or the plant part a chemical compound or an antibody reducing the enzymatic activity of the F35H protein or inhibiting the F35H protein; and
(f) optionally, regenerating a plant from the plant part of any of (a) to (e);
wherein improved digestibility relates to increased digestibility of maize plant or plant part from maize having the characteristic of a), b), c), d) or e) compared to a maize plant or plant part from maize not having such characteristic, and
wherein the unmutated F35H is selected from the group consisting of:

(i) a nucleotide sequence comprising the sequence of SEQ ID NO: 1, 4, or 7;
(ii) a nucleotide sequence having the cDNA of SEQ ID NO: 2, 5, or 8;
(iii) a nucleotide sequence encoding for an amino acid sequence having the amino acid sequence of SEQ ID NO: 3, 6, or 9;
(iv) a nucleotide sequence having at least 80% identity to the sequence of SEQ ID NO: 1, 2, 4, 5, 7, or 8;
(v) a nucleotide sequence encoding for a polypeptide having at least 80% identity to the sequence of SEQ ID NO: 3, 6, or 9; and
(vi) a nucleotide sequence hybridizing with the reverse complement of a nucleotide sequence as defined in (i), (ii) or (iii) under stringent hybridization conditions.
9. A maize plant or plant part from maize produced or producible by the method according to claim 8.

10. The method, plant, or plant part according to any of the preceding claims, wherein said plant is a maize plant, wherein the QTL is located on chromosome 9 and comprises and/or is flanked by marker alleles ma61070s01 and ma30168s02, preferably by marker alleles ma50827s01 and ma16983s02, more preferably by marker alleles ma17117s01 and ma61125s01;

wherein ma61070s01 is a single nucleotide polymorphism (SNP) at position 121588825 of chromosome 9 referenced to line PH207, wherein said nucleotide is A or T, preferably a single nucleotide polymorphism (SNP) as set forth in SEQ ID NO: 13; and

ma30168s02 is a single nucleotide polymorphism (SNP) at position 139452428 of chromosome 9 referenced to line PH207, wherein said nucleotide is A or G, preferably a single nucleotide polymorphism (SNP) as set forth in SEQ ID NO: 14; and

ma50827s01 is a single nucleotide polymorphism (SNP) at position 127454426 of chromosome 9 referenced to line PH207, wherein said nucleotide is A or G, preferably a single nucleotide polymorphism (SNP) as set forth in SEQ ID NO: 15; and

ma16983s02 is a single nucleotide polymorphism (SNP) at position 137363784 of chromosome 9 referenced to line PH207, wherein said nucleotide is A or G, preferably a single nucleotide polymorphism (SNP) as set forth in SEQ ID NO: 16; and

ma17117s01 is a single nucleotide polymorphism (SNP) at position 132038900 of chromosome 9 referenced to line PH207, wherein said nucleotide is A or G, preferably a single nucleotide polymorphism (SNP) as set forth in SEQ ID NO: 17; and

ma61125s01 is a single nucleotide polymorphism (SNP) at position 135947973 of chromosome 9 referenced to line PH207, wherein said nucleotide is A or G, preferably a single nucleotide polymorphism (SNP) as set forth in SEQ ID NO: 18.

11. The method, plant, or plant part according to any of the preceding claims, wherein the mutation is a frameshift mutation or a non-sense-mutation, results in a reduced or absent expression of the nucleotide sequence or a reduced enzymatic activity of the encoded protein, results in an altered protein sequence encoded by the nucleotide sequence, or is an insertion, deletion or substitution of at least one nucleotide in a coding region, in a splicing signal or in a regulatory element.

12. Use of the polynucleic acid specifically hybridising with any of the sequences of SEQ ID NO: 10, 12, 13, 14, 15, 16, 17, or 18, or the complement or the reverse complement thereof, or an allele specific polynucleic acid, for identification of a plant or plant part having improved digestibility or for selection of a plant or plant part having improved digestibility according to any one of claims 3 to 5, preferably in the method according to claim 1 or 2.

13. A method for producing an ensilaged plant material or animal feed having improved digestibility, comprising

(a) growing the plant according to any one of claims 3 to 5 and 9, or a plant identified or identifiable by the method of claims 1 or 2, or a progeny thereof having the improved digestibility as defined in claim 1,
(b) harvesting the plant or a part thereof, and
(c) ensiling the plant or a part thereof of (b).

14. The method according to claim 13, wherein the part in step (b) and (c) is stover.

15. An ensilaged plant material or animal feed produced by the method of claim 13 or 14.

Patentansprüche

1. Verfahren zum Identifizieren einer Maispflanze oder eines Pflanzenteils von Mais mit verbesserter Verdaulichkeit, umfassend

a) Screenen auf Vorhandensein eines QTL-Alles, beispielsweise eines QTL-Alles, das mit verbesserter Verdaulichkeit verbunden ist, wobei das QTL-Allel eine Nukleotidsequenz eines Gens codierend eine Cytochrom-P450-Flavonoid-3',5'-Hydroxylase (F35H) umfasst, welche eine Mutation, die zu einer reduzierten oder fehlenden Expression der mRNA des Gens und/oder des F35H-Proteins führt (zum Beispiel eine Knock-Down- oder
eine Knock-Out-Mutation), oder eine Mutation, die zu einem nicht-funktionsfähigen F35H-Protein (z. B. einem
trunkierten F35H-Protein) oder einem F35H-Protein mit reduzierter enzymatischer Aktivität nach der Translation
führt, aufweist, oder
b) Screenen auf reduzierte oder fehlende Expression der mRNA eines Gens codierend eine Cytochrom-P450-
Flavonoid-3',5'-Hydroxylase (F35H) und/oder das F35H-Protein oder auf ein nicht-funktionsfähiges F35H-Pro-
tein (z. B. ein trunkiertes F35H-Protein) oder ein F35H-Protein mit reduzierter enzymatischer Aktivität oder
c) Screenen auf Vorhandensein einer Mutation, die zu einer reduzierten oder fehlenden Expression der mRNA
eines Gens codierend eine Cytochrom-P450-Flavonoid-3',5'-Hydroxylase (F35H) und/oder das F35H-Proteins
führt, oder einer Mutation, die zu einem nicht-funktionsfähigen F35H-Protein oder einem F35H-Protein mit
reduzierter enzymatischer Aktivität nach der Translation führt;
wobei sich verbesserte Verdauung auf eine erhöhte Verdauung der Maispflanze oder des Pflanzenteils
von Mais mit der Eigenschaft a), b) oder c) im Vergleich zu einer Maispflanze oder einem Pflanzenteil von Mais
ohne diese Eigenschaft bezieht; und
wobei die nicht-mutierte F35H aus der Gruppe ausgewählt ist, die besteht aus:

(i) einer Nukleotidsequenz, welche die Sequenz von SEQ ID NR.: 1 umfasst;
(ii) einer Nukleotidsequenz, welche die cDNA von SEQ ID NR.: 2 aufweist;
(iii) einer Nukleotidsequenz, die eine Aminosäuresequenz codiert, welche die Aminosäuresequenz von
SEQ ID NR.: 3 aufweist;
(iv) einer Nukleotidsequenz, die eine Identität mit der Sequenz von SEQ ID NR.: 1 oder 2 von mindestens
80 % aufweist;
(v) einer Nukleotidsequenz, die ein Polypeptid codiert, das eine Identität mit der Sequenz von SEQ ID NR.: 3
von mindestens 80 % aufweist;
(vi) einer Nukleotidsequenz, welche unter stringenten Hybridisierungsbedingungen an das reverse Kom-
plement einer Nukleotidsequenz nach der Definition in (i), (ii), (iii) hybridisiert.

2. Verfahren nach Anspruch 1, wobei das Verfahren das Screenen auf Vorhandensein des molekularen Markerallels
ma61134xxx und/oder eines oder mehrerer molekularer Markerallele umfasst, das bzw. die sich in einem chromo-
somalen Intervall auf Chromosom 9 flankiert von Markerallelen ma61070s01 und ma30168s02, vorzugsweise von
Markerallelen ma50827s01 und ma16983s02, insbesondere von Markerallelen ma17117s01 und ma61125s01,
beiden;

wobei es sich bei ma61134xxx um eine Insertion von einem oder mehreren Nukleotiden zwischen Position
134254381 und 134254382 von Chromosom 9 bezogen auf die Linie PH207 handelt, vorzugsweise um eine
Insertion, wie in SEQ ID NR.: 12 dargelegt; und
es sich bei ma61070s01 um einen Einzelnukleotidpolymorphismus (Single Nucleotide Polymorphism, SNP) an
Position 121588825 von Chromosom 9 bezogen auf die Linie PH207 handelt, wobei es sich bei dem Nukleotid
um A oder T handelt, vorzugsweise um einen Einzelnukleotidpolymorphismus (SNP) wie in SEQ ID NR.: 13
dargelegt; und
es sich bei ma30168s02 um einen Einzelnukleotidpolymorphismus (SNP) an Position 139452428 von Chro-
mosom 9 bezogen auf die Linie PH207 handelt, wobei es sich bei dem Nukleotid um A oder G handelt, vor-
zugsweise um einen Einzelnukleotidpolymorphismus (SNP) wie in SEQ ID NR.: 14 dargelegt; und
es sich bei ma50827s01 um einen Einzelnukleotidpolymorphismus (SNP) an Position 127454426 von Chro-
mosom 9 bezogen auf die Linie PH207 handelt, wobei es sich bei dem Nukleotid um A oder G handelt, vor-
zugsweise um einen Einzelnukleotidpolymorphismus (SNP) wie in SEQ ID NR.: 15 dargelegt; und
es sich bei ma16983s02 um einen Einzelnukleotidpolymorphismus (SNP) an Position 137363784 von Chro-
mosom 9 bezogen auf die Linie PH207 handelt, wobei es sich bei dem Nukleotid um A oder G handelt, vor-
zugsweise um einen Einzelnukleotidpolymorphismus (SNP) wie in SEQ ID NR.: 16 dargelegt; und
es sich bei ma17117s01 um einen Einzelnukleotidpolymorphismus (SNP) an Position 132038900 von Chro-
mosom 9 bezogen auf die Linie PH207 handelt, wobei es sich bei dem Nukleotid um A oder G handelt, vor-
zugsweise um einen Einzelnukleotidpolymorphismus (SNP) wie in SEQ ID NR.: 17 dargelegt; und
es sich bei ma61125s01 um einen Einzelnukleotidpolymorphismus (SNP) an Position 135947973 von Chro-
mosom 9 bezogen auf die Linie PH207 handelt, wobei es sich bei dem Nukleotid um A oder G handelt, vor-
zugsweise um einen Einzelnukleotidpolymorphismus (SNP) wie in SEQ ID NR.: 18 dargelegt.

3. Maispflanze oder Pflanzenteil von Mais mit verbesserter Verdauung, umfassend

a) ein QTL-Allel, das mit verbesserter Verdauung verbunden ist, wobei das QTL-Allel eine Nukleotidsequenz


72
eines Gens codierend eine Cytochrom-P450-Flavonoid-3',5'-Hydroxylase (F35H), umfasst, welche eine Mutation, die zu einer reduzierten oder fehlenden Expression der mRNA des Gens und/oder des F35H-Proteins führt, oder eine Mutation, die zu einem nicht-funktionsfähigen F35H-Protein oder einem F35H-Protein mit reduzierter enzymatischer Aktivität nach der Translation führt, aufweist; oder

b) eine Nukleotidsequenz eines Gens codierend eine Cytochrom-P450-Flavonoid-3',5'-Hydroxylase (F35H), welche eine Mutation, die zu einer reduzierten oder fehlenden Expression der mRNA des Gens und/oder des F35H-Proteins führt, oder eine Mutation, die zu einem nicht-funktionsfähigen F35H-Protein oder einem F35H-Protein mit reduzierter enzymatischer Aktivität nach der Translation führt, aufweist; oder
c) eine Nukleotidsequenz eines Gens codierend eine Cytochrom-P450-Flavonoid-3',5'-Hydroxylase (F35H) mit einer reduzierten oder fehlenden Expression der mRNA des Gens und/oder des F35H-Proteins oder mit reduzierter enzymatischer Aktivität; oder
d) ein RNAi-Molekül, das gegen eine Nukleotidsequenz gerichtet ist, auf eine Nukleotidsequenz abzielt oder an eine Nukleotidsequenz hybridisiert, die ein F35H-Protein codiert, oder eine Polynukleotidsequenz umfasst, die ein RNAi-Molekül codiert, das gegen eine Nukleotidsequenz gerichtet ist, auf eine Nukleotidsequenz abzielt oder an eine Nukleotidsequenz hybridisiert, die ein F35H-Protein codiert; oder
e) ein RNA-spezifisches CRISPR/Cas-System, das gegen eine Nukleotidsequenz gerichtet ist oder auf eine Nukleotidsequenz abzielt, die eine Cytochrom-P450-Flavonoid-3',5'-Hydroxylase (F35H) codiert, oder eine oder mehrere Polynukleotidsequenz(en), die das RNA-spezifische CRISPR/Cas-System codiert bzw. codieren; wobei sich verbesserte Verdaulichkeit auf eine erhöhte Verdaulichkeit der Maispflanze oder des Pflanzenteils von Mais mit der Eigenschaft a), b), c), d) oder e) im Vergleich zu einer Maispflanze oder einem Pflanzenteil von Mais ohne diese Eigenschaft bezieht, und wobei die nicht-mutierte F35H aus der Gruppe ausgewählt ist, die besteht aus:

(i) einer Nukleotidsequenz, welche die Sequenz von SEQ ID NR.: 1 umfasst;  
(ii) einer Nukleotidsequenz, welche die cDNA von SEQ ID NR.: 2 aufweist;  
(iii) einer Nukleotidsequenz, die eine Aminosäuresequenz codiert, welche die Aminosäuresequenz von SEQ ID NR.: 3 aufweist;  
(iv) einer Nukleotidsequenz, die eine Identität mit der Sequenz von SEQ ID NR.: 1 oder 2 von mindestens 80 % aufweist;  
(v) einer Nukleotidsequenz, die ein Polypeptid codiert, das eine Identität mit der Sequenz von SEQ ID NR.: 3 von mindestens 80 % aufweist; und  
(vi) einer Nukleotidsequenz, welche unter stringenten Hybridisierungsbedingungen an das reverse Komplement einer Nukleotidsequenz nach der Definition in (i), (ii) oder (iii) hybridisiert;

wobei die Maispflanze oder der Pflanzenteil von Mais nicht ausschließlich mithilfe eines essenziellen biologischen Prozesses erhalten wird.


5. Pflanze oder Pflanzenteil von Mais nach Anspruch 3 oder 4, wobei die Maispflanze das QTL-Allel, die Marker-Allele, die Nukleotidsequenz des Gens codierend die Cytochrom-P450-Flavonoid-3',5'-Hydroxylase (F35H) mit der Mutation, das RNAi-Molekül oder die das RNAi-Molekül codierende Polynukleotidsequenz, das RNA-spezifische CRISPR/Cas-System und/oder die eine oder mehreren Polynukleotidsequenz(en) codierend das RNA-spezifische CRISPR/Cas-System als Transgen oder als (gen-)editiertes Endogen umfasst.


(a) einer Nukleotidsequenz eines Gens codierend eine Cytochrom-P450-Flavonoid-3',5'-Hydroxylase (F35H), welche eine Mutation, die zu einer reduzierten oder fehlenden Expression der mRNA des Gens und/oder des F35H-Proteins führt, oder eine Mutation, die zu einem nicht-funktionsfähigen F35H-Protein oder einem F35H-Protein mit reduzierter enzymatischer Aktivität nach der Translation führt, aufweist, oder
wobei das Verfahren umfasst
(b) Reduzieren der Expression der mRNA eines Gens codierend eine Cytochrom-P450-Flavonoid-3',5'-Hydroxylase (F35H) und/oder das F35H-Protein oder Reduzieren der enzymatischen Aktivität einer Cytochrom-P450-Flavonoid-3',5'-Hydroxylase (F35H);

wobei sich verbesserte Verdaulichkeit auf eine erhöhte Verdaulichkeit der Maispflanze oder eines Pflanzenteils von Mais mit der Eigenschaft a) oder b) im Vergleich zu einer Maispflanze oder einem Pflanzenteil von Mais ohne diese Eigenschaft bezieht, und
wobei das nicht-mutierte F35H aus der Gruppe ausgewählt ist, die besteht aus:

(i) einer Nukleotidsequenz, welche die Sequenz von SEQ ID NR.: 1, 4 oder 7 umfasst;
(ii) einer Nukleotidsequenz, welche die cDNA von SEQ ID NR.: 2, 5 oder 8 aufweist;
(iii) einer Nukleotidsequenz, die eine Aminosäuresequenz codiert, welche die Aminosäuresequenz von SEQ ID NR.: 3, 6 oder 9 aufweist;
(iv) einer Nukleotidsequenz, die eine Identität mit der Sequenz von SEQ ID NR.: 1, 2, 4, 5, 7 oder 8 von mindestens 80 % aufweist;
(v) einer Nukleotidsequenz, die ein Polypeptid codiert, das eine Identität mit der Sequenz von SEQ ID NR.: 3, 6 oder 9 von mindestens 80 % aufweist;
(vi) einer Nukleotidsequenz, welche unter stringenten Hybridisierungsbedingungen an das reverse Komplement einer Nukleotidsequenz nach der Definition in (i), (ii) oder (iii) hybridisiert.

7. Verfahren nach Anspruch 6 (b), umfassend

(a) Einbringen einer Mutation, die zu einer reduzierten oder fehlenden Expression der mRNA des Gens und/oder des F35H-Proteins führt, oder einer Mutation, die zu einem nicht-funktionsfähigen F35H-Protein oder einem F35H-Protein mit reduzierter enzymatischer Aktivität nach der Translation führt, in eine Nukleotidsequenz eines endogenen Gens codierend die Cytochrom-P450-Flavonoid-3',5'-Hydroxylase (F35H), oder
(b) Einbringen eines RNAi-Moleküls, das gegen eine Nukleotidsequenz gerichtet ist, auf eine Nukleotidsequenz abzielt oder an eine Nukleotidsequenz hybridisiert, die das F35H-Protein codiert, oder einer Polynukleotidsequenz, die ein RNAi-Molekül codiert, das gegen eine Nukleotidsequenz gerichtet ist, auf eine Nukleotidsequenz abzielt oder an eine Nukleotidsequenz hybridisiert, die das F35H-Protein codiert, in die Pflanze oder den Pflanzenteil, oder
(c) Einbringen eines RNA-spezifisches CRISPR/Cas-Systems, das gegen eine Nukleotidsequenz gerichtet ist oder auf eine Nukleotidsequenz abzielt, die das F35H-Protein codiert, oder einer oder mehrerer Polynukleotidsequenz(en), die das RNA-spezifische CRISPR/Cas-System codiert bzw. codieren, in die Pflanze oder den Pflanzenteil, oder
(d) Einbringen einer chemischen Verbindung oder eines Antikörpers, die bzw. der die enzymatische Aktivität des F35H-Proteins bei Wechselwirkung mit der F35H reduziert oder hemmt, in die Pflanze oder den Pflanzenteil.

8. Verfahren zum Herstellen einer Maispflanze oder eines Pflanzenteils von Mais mit verbesserter Verdaulichkeit, umfassend

(a) Einbringen einer Nukleotidsequenz eines Gens codierend eine Cytochrom-P450-Flavonoid-3',5'-Hydroxylase (F35H), welche eine Mutation, die zu einer reduzierten oder fehlenden Expression der mRNA des Gens und/oder des F35H-Proteins führt, oder eine Mutation, die zu einem nicht-funktionsfähigen F35H-Protein oder einem F35H-Protein mit reduzierter enzymatischer Aktivität nach der Translation führt, aufweist, in das Genom einer Pflanze oder eines Pflanzenteils durch stabile oder transiente Integration mithilfe von Transformation, Insertion unter Verwendung von Geneditierungstechnologie oder Modifikation unter Verwendung von zufälliger oder zielgerichteter Mutagenese, oder
(b) Einbringen einer Mutation, die zu einer reduzierten oder fehlenden Expression der mRNA des Gens und/oder des F35H-Proteins führt, oder einer Mutation, die zu einem nicht-funktionsfähigen F35H-Protein oder einem F35H-Protein mit reduzierter enzymatischer Aktivität nach der Translation führt, in eine Nukleotidsequenz eines endogenen Gens codierend die Cytochrom-P450-Flavonoid-3',5'-Hydroxylase (F35H) durch Modifikation unter Verwendung von zufälliger oder zielgerichteter Mutagenese, oder
(c) Einbringen eines RNAi-Moleküls, das gegen eine Nukleotidsequenz gerichtet ist, auf eine Nukleotidsequenz abzielt oder an eine Nukleotidsequenz hybridisiert, die das F35H-Protein codiert, oder einer Polynukleotidsequenz, die ein RNAi-Molekül codiert, das gegen eine Nukleotidsequenz gerichtet ist, auf eine Nukleotidsequenz abzielt oder an eine Nukleotidsequenz hybridisiert, die das F35H-Protein codiert, in die Pflanze oder den Pflanzenteil durch stabile oder transiente Integration mithilfe von Transformation, Insertion unter Verwendung von
Geneditierungs-technologie, oder
d) Einbringen eines RNA-spezifischen CRISPR/Cas-Systems, das gegen eine Nukleotidsequenz gerichtet ist
oder auf eine Nukleotidsequenz abzielt, die das F35H-Protein codiert, oder einer oder mehrerer Polynukleotid-
sequenz(en), die das RNA-spezifische CRISPR/Cas-System codiert bzw. codieren, in die Pflanze oder den
Pflanzenteil durch stabile oder transiente Integration mithilfe von Transformation, Insertion unter Verwendung
von Geneditierungs-technologie, oder
e) Einbringen einer chemischen Verbindung oder eines Antikörpers, die bzw. der die enzymatische Aktivität
des F35H-Proteins reduziert oder das F35H-Protein hemmt, in die Pflanze oder den Pflanzenteil; und
(f) wahlweise Regenerieren einer Pflanze aus dem Pflanzenteil von einem von (a) bis (e):

wobei sich verbesserte Verdaulichkeit auf eine erhöhte Verdaulichkeit der Maispflanze oder des Pflanzenteils
von Mais mit der Eigenschaft a), b), c), d) oder e) im Vergleich zu einer Maispflanze oder einem Pflanzenteil
von Mais ohne diese Eigenschaft bezieht, und
wobei die nicht-mutierte F35H aus der Gruppe ausgewählt ist, die besteht aus:

(i) einer Nukleotidsequenz, welche die Sequenz von SEQ ID NR.: 1, 4 oder 7 umfasst;
(ii) einer Nukleotidsequenz, welche die cDNA von SEQ ID NR.: 2, 5 oder 8 aufweist;
(iii) einer Nukleotidsequenz, die eine Aminosäuresequenz codiert, welche die Aminosäuresequenz von
SEQ ID NR.: 3, 6 oder 9 aufweist;
(iv) einer Nukleotidsequenz, die eine Identität mit der Sequenz von SEQ ID NR.: 1, 2, 4, 5, 7 oder 8 von
mindestens 80 % aufweist;
(v) einer Nukleotidsequenz, die ein Polypeptid codiert, das eine Identität mit der Sequenz von SEQ ID NR.: 3,
6 oder 9 von mindestens 80 % aufweist;
(vi) einer Nukleotidsequenz, welche unter stringenter Hybridisierungsbedingungen an das reverse Kom-
plement einer Nukleotidsequenz nach der Definition in (i), (ii) oder (iii) hybridisiert.


10. Verfahren, Pflanze oder Pflanzenteil nach einem der vorhergehenden Ansprüche, wobei es sich bei der Pflanze um
eine Maispflanze handelt, wobei sich der QTL auf Chromosom 9 befindet und Markerallele ma61070s01 und
ma30168s02, vorzugsweise Markerallele ma50827s01 und ma16983s02, insbesondere Markerallele ma17117s01
und ma61125s01, umfasst und/oder davon flankiert wird;

wobei es sich bei ma61070s01 um einen Einzelnukleotidpolymorphismus (SNP) an Position 121588825 von
Chromosom 9 bezogen auf die Linie PH207 handelt, wobei es sich bei dem Nukleotid um A oder T handelt,
vorzugsweise um einen Einzelnukleotidpolymorphismus (SNP) wie in SEQ ID NR.: 13 dargelegt; und
es sich bei ma30168s02 um einen Einzelnukleotidpolymorphismus (SNP) an Position 139452428 von Chro-
mosom 9 bezogen auf die Linie PH207 handelt, wobei es sich bei dem Nukleotid um A oder G handelt, vor-
zugsweise um einen Einzelnukleotidpolymorphismus (SNP) wie in SEQ ID NR.: 14 dargelegt; und
es sich bei ma50827s01 um einen Einzelnukleotidpolymorphismus (SNP) an Position 127454426 von Chro-
mosom 9 bezogen auf die Linie PH207 handelt, wobei es sich bei dem Nukleotid um A oder G handelt, vor-
zugsweise um einen Einzelnukleotidpolymorphismus (SNP) wie in SEQ ID NR.: 15 dargelegt; und
es sich bei ma16983s02 um einen Einzelnukleotidpolymorphismus (SNP) an Position 137363784 von Chro-
mosom 9 bezogen auf die Linie PH207 handelt, wobei es sich bei dem Nukleotid um A oder G handelt, vor-
zugsweise um einen Einzelnukleotidpolymorphismus (SNP) wie in SEQ ID NR.: 16 dargelegt; und
es sich bei ma17117s01 um einen Einzelnukleotidpolymorphismus (SNP) an Position 132038900 von Chro-
mosom 9 bezogen auf die Linie PH207 handelt, wobei es sich bei dem Nukleotid um A oder G handelt, vor-
zugsweise um einen Einzelnukleotidpolymorphismus (SNP) wie in SEQ ID NR.: 17 dargelegt; und
es sich bei ma50827s01 um einen Einzelnukleotidpolymorphismus (SNP) an Position 135947973 von Chro-
mosom 9 bezogen auf die Linie PH207 handelt, wobei es sich bei dem Nukleotid um A oder G handelt, vor-
zugsweise um einen Einzelnukleotidpolymorphismus (SNP) wie in SEQ ID NR.: 18 dargelegt.

11. Verfahren, Pflanze oder Pflanzenteil nach einem der vorhergehenden Ansprüche, wobei die Mutation eine Frame-
shift-Mutation oder eine Nonsense-Mutation ist, zu einer reduzierten oder fehlenden Expression der Nukleotidse-
quenz oder einer reduzierten enzymatischen Aktivität des codierten Proteins führt, zu einer veränderten von der
Nukleotidsequenz codierten Proteineinheit führt oder es sich dabei um eine Insertion, Deletion oder Substitution
von mindestens einem Nukleotid in einer codierenden Region, in einem Splice signals oder in einem regulatorischen
Element handelt.
12. Verwendung der Polynukleotidsäure, die spezifisch an eine der Sequenzen SEQ ID NR.: 10, 12, 13, 14, 15, 16, 17 oder 18 hybridisiert, oder des Komplements oder des reversen Komplements davon oder einer allelespezifischen Polynukleinsäure zur Identifizierung einer Pflanze oder eines Pflanzenteils mit verbesserter Verdaulichkeit oder zur Auswahl einer Pflanze oder eines Pflanzenteils mit verbesserter Verdaulichkeit nach einem der Ansprüche 3 bis 5, vorzugsweise in dem Verfahren nach Anspruch 1 oder 2.

13. Verfahren zum Herstellen eines silierten Pflanzenmaterials oder Tierfuttermittels mit verbesserter Verdaulichkeit, umfassend

(a) Züchten der Pflanze nach einem der Ansprüche 3 bis 5 und 9 oder einer Pflanze, die mit dem Verfahren nach Anspruch 1 oder 2 identifiziert wird oder identifizierbar ist, oder eines Nachkommens davon mit der verbesserten Verdaulichkeit nach der Definition in Anspruch 1,
(b) Ernten der Pflanze oder eines Teils davon und
(c) Sieren der Pflanze oder eines Teils davon von (b).

14. Verfahren nach Anspruch 13, wobei der Teil in Schritt (b) und (c) um Pflanzenüberreste nach der Ernte handelt.

15. Siliertes Pflanzenmaterial oder Tierfuttermittel, das mit dem Verfahren nach Anspruch 13 oder 14 hergestellt wird.

Revendications

1. Procédé d'identification de maïs ou d'une partie de plant de maïs ayant une digestibilité améliorée, comprenant

   a) la détection de la présence d'un allèle QTL, tel qu'un allèle QTL associé à une digestibilité améliorée, edit allèle QTL comprenant une séquence nucléotide d'un gène codant une cytochrome P450 flavonoïde 3',5'-hydroxylase (F35H), ayant une mutation conduisant à une expression réduite ou absente du mRNA du gène et/ou de la protéine F35H (telle qu'une mutation knock-down ou knock-out), ou une mutation conduisant à une protéine F35H non fonctionnelle (par exemple une protéine F35H tronquée) ou une protéine F35H ayant une activité enzymatique réduite à la translation, ou
   b) la détection de l'expression réduite ou absente du mRNA d'un gène codant une cytochrome P450 flavonoïde 3',5'-hydroxylase (F35H) et/ou une protéine F35H non fonctionnelle (par exemple une protéine F35H tronquée) ou une protéine F35H ayant une activité enzymatique réduite à la translation ;
   c) la détection de la présence d'une mutation conduisant à une expression réduite ou absente du mRNA d'un gène codant une cytochrome P450 flavonoïde 3',5'-hydroxylase (F35H) et/ou la protéine F35H, ou d'une mutation conduisant à une protéine F35H non fonctionnelle ou à une protéine F35H ayant une activité enzymatique réduite à la translation ;

   la digestibilité améliorée concernant la digestibilité accrue du plant de maïs ou d'une partie de plant de maïs ayant la caractéristique de a), b) ou c) comparativement à un plant de maïs ou à une partie de plant de maïs n'ayant pas cette caractéristique ; et

   la F35H non mutée étant sélectionnée dans le groupe composé :
   (i) d’une séquence nucléotide comprenant la séquence de SEQ ID NO: 1 ;
   (ii) d’une séquence nucléotide ayant le cDNA de SEQ ID NO: 2 ;
   (iii) d’une séquence nucléotide codant pour une séquence d’acide aminé ayant la séquence d’acide aminé de SEQ ID NO: 3 ;
   (iv) d’une séquence nucléotide ayant au moins 80 % d'identité avec la séquence de SEQ ID NO: 1, ou 2 ;
   (v) d’une séquence nucléotide codant pour un polypeptide ayant au moins 80 % d'identité avec la séquence de SEQ ID NO: 3 ;
   (vi) d’une séquence nucléotide hybridant avec le complément inverse d’une séquence de type tel que défini dans (i), (ii) ou (iii) dans des conditions d'hybridation strictes.

2. Procédé selon la revendication 1, ce procédé comprenant la détection de la présence de l'allèle marqueur moléculaire de ma81134xx et/ou de plusieurs allèles marqueurs moléculaires se trouvant dans un intervalle chromosomique sur le chromosome 9 flanqué par des allèles marqueurs ma61070s01 et ma30168s02, de préférence par les allèles marqueurs ma50827s01 et ma16983s02, plus préférentiellement par les allèles marqueurs ma17117s01 et ma61125s01 ;
ma61134xxx étant une insertion d’un ou plusieurs nucléotides entre la position 134254381 et 134254382 du chromosome 9 référencé pour la ligne PH207, de préférence une insertion telle qu’établie dans SEQ ID NO: 12 ; et
ma61070s01 étant un polymorphisme nucléotidique simple (SNP) à la position 121588825 du chromosome 9 référencé pour la ligne PH207, ledit nucléotide étant A ou T, de préférence un polymorphisme nucléotidique simple (SNP) tel qu’établi dans SEQ ID NO: 13 ; et
ma30168s02 étant un polymorphisme nucléotidique simple (SNP) à la position 139452428 du chromosome 9 référencé pour la ligne PH207, ledit nucléotide étant A ou G, de préférence un polymorphisme nucléotidique simple (SNP) tel qu’établi dans SEQ ID NO: 14 ; et
ma50827s01 étant un polymorphisme nucléotidique simple (SNP) à la position 127454426 du chromosome 9 référencé pour la ligne PH207, ledit nucléotide étant A ou G, de préférence un polymorphisme nucléotidique simple (SNP) tel qu’établi dans SEQ ID NO: 15 ; et
ma61125s01 étant un polymorphisme nucléotidique simple (SNP) à la position 135947973 du chromosome 9 référencé pour la ligne PH207, ledit nucléotide étant A ou G, de préférence un polymorphisme nucléotidique simple (SNP) tel qu’établi dans SEQ ID NO: 18.

3. Plant de maïs ou partie de plant de maïs ayant une digestibilité améliorée, comprenant

a) un allèle QTL associé à une digestibilité améliorée, ledit allèle QTL comprenant une séquence nucléotide d’un gène codant flavonoïde 3’,5’-hydroxylase (F35H), ayant une mutation conduisant à une expression réduite ou absente du mRNA du gène et/ou de la protéine F35H (telle qu’une mutation knock-down ou knock-out), ou une mutation conduisant à une protéine F35H non fonctionnelle (par exemple une protéine F35H tronquée) ou une protéine F35H ayant une activité enzymatique réduite à la translation, ou

b) une séquence nucléotide d’un gène codant une cytochrome P450 flavonoïde 3’,5’-hydroxylase (F35H), ayant une mutation conduisant à une expression réduite ou absente du mRNA du gène et/ou de la protéine F35H, ou une mutation conduisant à une protéine F35H non fonctionnelle ou à une protéine F35H ayant une activité enzymatique réduite à la translation ; ou

c) une séquence nucléotide d’un gène codant une cytochrome P450 flavonoïde 3’,5’-hydroxylase (F35H) ayant une mutation conduisant à une expression réduite ou absente du mRNA du gène et/ou de la protéine F35H ou ayant une activité enzymatique réduite ; ou

d) une molécule d’RNAi dirigée contre, ciblant ou hybridant avec une séquence nucléotide codant une protéine F35H, ou comprenant une séquence polynucléotide codant une molécule dirigée contre, ciblant ou hybridant avec une séquence polynucléotide codant une protéine F35H ; ou

e) un système CRISPR/Cas spécifique au RNA dirigé contre ou ciblant une séquence nucléotide codant une cytochrome P450 flavonoïde 3’,5’-hydroxylase (F35H) ou une ou plusieurs séquences polynucléotide codant ledit système CRISPR/Cas spécifique au RNA ;

la digestibilité améliorée concernant la digestibilité accrue du plant de maïs ou d’une partie de plant de maïs ayant la caractéristique de a), b), c), d) ou e) comparativement à un plant de maïs ou à une partie de plant de maïs n’ayant pas cette caractéristique ; et

la F35H non mutée étant sélectionnée dans le groupe composé :

(i) d’une séquence nucléotide comprenant la séquence de SEQ ID NO: 1 ;
(ii) d’une séquence nucléotide ayant le cDNA de SEQ ID NO: 2 ;
(iii) d’une séquence nucléotide codant pour une séquence d’acide aminé ayant la séquence d’acide aminé de SEQ ID NO: 3 ;
(iv) d’une séquence nucléotide ayant au moins 80 % d’identité avec la séquence de SEQ ID NO: 1, ou 2 ;
(v) d’une séquence nucléotide codant pour un polypeptide ayant au moins 80 % d’identité avec la séquence de SEQ ID NO: 3 ;
(vi) d’une séquence nucléotide hybridant avec le complément inverse d’une séquence de type tel que défini dans (i), (ii) ou (iii) dans des conditions d’hybridation strictes ;

le plant de maïs ou la partie de plant de maïs n’étant pas exclusivement obtenu au moyen d’un processus
4. Plant de maïs ou partie de plant de maïs selon la revendication 3, dans lequel ledit plant de maïs comprend l’allèle marqueur de ma61134xxx ; ma61134xxx étant une insertion d’un ou plusieurs nucléotides entre la position 134254381 et134254382 du chromosome 9 référencé pour la ligne PH207, de préférence une insertion telle qu’établie dans SEQ ID NO: 12.

5. Plant de maïs ou partie de plant de maïs selon la revendication 3 ou 4, ledit plant de maïs comprenant ledit allèle marqueur QTL, lesdits allèles marqueurs, ladite séquence nucléotide du gène codant la cytochrome P450 flavonoïde 3',5'-hydroxylase (F35H) ayant la mutation, ladite molécule de RNAi ou ladite séquence polynucléotide codant la molécule de RNAi, ledit système CRISPR/Cas spécifique au RNA et/ou lesdites une ou plusieurs séquences nucléotide codant le système CRISPR/Cas spécifique au RNA en tant que transgène ou qu’endogène édité (par gène).

6. Procédé d’amélioration de la digestibilité d’un plant de maïs ou d’une partie de plant de maïs, comprenant l’introduction, par intégration stable ou transitoire au moyen d’une transformation, d’une insertion utilisant la technologie d’édition de gène ou d’une modification utilisant la mutagenèse alléatoire ou ciblée dans le génome du plant ou d’une partie de plant,

   (a) une séquence nucléotide d’un gène codant une cytochrome P450 flavonoïde 3',5'-hydroxylase (F35H), ayant une mutation conduisant une expression réduite ou absente du mRNA du gène et/ou de la protéine F35H, ou une mutation conduisant à une protéine F35H non fonctionnelle ou une protéine F35H ayant une activité enzymatique réduite à la translation, ou
   (b) la réduction de l’expression du mRNA d’un gène codant une cytochrome P450 flavonoïde 3',5'-hydroxylase (F35H) et/ou la protéine F35H, ou la réduction de l’activité enzymatique d’une cytochrome P450 flavonoïde 3',5'-hydroxylase (F35H) ;
   la digestibilité améliorée concernant la digestibilité accrue du plant de maïs ou d’une partie de plant de maïs ayant la caractéristique de a) ou b) comparativement à un plant de maïs ou à une partie de plant de maïs n’ayant pas cette caractéristique ; et
   la F35H non mutée étant sélectionnée dans le groupe composé :

   (i) d’une séquence nucléotide comprenant la séquence de SEQ ID NO: 1, 4 ou 7 ;
   (ii) d’une séquence nucléotide ayant le cDNA de SEQ ID NO: 2, 5 ou 8 ;
   (iii) d’une séquence nucléotide codant pour une séquence d’acide aminé ayant la séquence d’acide aminé de SEQ ID NO: 3, 6 ou 9 ;
   (iv) d’une séquence nucléotide ayant au moins 80 % d’identité avec la séquence de SEQ ID NO: 1, 2, 4, 5, 7 ou 8 ;
   (v) d’une séquence nucléotide codant pour un polypeptide ayant au moins 80 % d’identité avec la séquence de SEQ ID NO: 3, 6 ou 9 ;
   (vi) d’une séquence nucléotide hybridant avec le complément inverse d’une séquence de type tel que défini dans (i), (ii) ou (iii) dans des conditions d’hybridation strictes.

7. Procédé selon la revendication 6 (b), comprenant

   (a) l’introduction dans une séquence nucléaire d’un gène endogène codant la cytochrome P450 flavonoïde 3',5'-hydroxylase (F35H), d’une mutation conduisant à une expression réduite ou absente du mRNA du gène et/ou de la protéine F35H, ou d’une mutation conduisant à une protéine F35H non fonctionnelle ou une protéine F35H ayant une activité enzymatique réduite à la translation, ou
   (b) l’introduction dans le plant ou la partie de plant d’une molécule de RNAi dirigée contre, ciblant ou hybridant avec une séquence nucléotide codant une protéine F35H, ou une séquence polynucléotide codant une molécule dirigée contre, ciblant ou hybridant avec une séquence polynucléotide codant une protéine F35H ; ou
   (c) l’introduction dans le plant ou la partie de plant d’un système CRISPR/Cas spécifique au RNA dirigé contre ou ciblant une séquence nucléotide codant la protéine F35H, ou une ou plusieurs séquences polynucléotide codant ledit système CRISPR/Cas spécifique au RNA, ou
   (d) l’introduction dans le plant ou la partie de plant d’un composé chimique ou d’un anticorps réduisant ou inhibant l’activité enzymatique de la protéine F35H en cas d’interaction avec ladite F35H.

8. Procédé de production d’un plant de maïs ou d’une partie de plant de maïs ayant une digestibilité améliorée,
comprenant

(a) l’introduction, par intégration stable ou transitoire au moyen d’une transformation, d’une insertion utilisant une technologie d’édition de gène ou d’une modification utilisant une mutagenèse aléatoire ou ciblée, dans le génome d’un plant ou d’une partie de plant, d’une séquence nucléotidique d’un gène codant une cytochrome P450 flavonoïde 3',5'-hydroxylase (F35H), ayant une mutation conduisant à une expression réduite ou absente du mRNA du gène et/ou de la protéine F35H, ou une mutation conduisant à une protéine F35H non fonctionnelle ou une protéine F35H ayant une activité enzymatique réduite à la translation, ou
(b) l’introduction, par modification utilisant une mutagenèse aléatoire ou ciblée, dans une séquence nucléotidique d’un gène endogène codant la cytochrome P450 flavonoïde 3',5'-hydroxylase (F35H), d’une mutation conduisant à une expression réduite ou absente du mRNA du gène et/ou de la protéine F35H, ou d’une mutation conduisant à une protéine F35H non fonctionnelle ou une protéine F35H ayant une activité enzymatique réduite à la translation, ou
(c) l’introduction, par intégration stable ou transitoire au moyen d’une transformation ou d’une insertion utilisant une technologie d’édition de gène dans le plant ou dans la partie de plant, d’une molécule de RNAi dirigée contre, ciblant ou hybridant avec une séquence nucléotidique codant la protéine F35H, ou comprenant une séquence polynucléotidique codant une molécule de RNAi dirigée contre, ciblant ou hybridant avec une séquence polynucléotidique codant la protéine F35H ;
(d) l’introduction, par intégration stable ou transitoire au moyen d’une transformation ou d’une insertion utilisant une technologie d’édition de gène, dans le plant ou dans la partie de plant d’un système CRISPR/Cas spécifique au RNA dirigé contre ou ciblant une séquence nucléotidique codant la protéine F35H , d’une ou plusieurs séquences polynucléotidiques codant le système CRISPR/Cas spécifique au RNA, ou
(e) l’introduction, dans le plant ou la partie de plant, d’un composé chimique ou d’un anticorps réduisant ou inhibant l’activité enzymatique de la protéine F35H ou inhibant la protéine F35H, et
(f) en option, la régénération d’un plant à partir de la partie de plant de l’un quelconque des points (a) à (e) ; la digestibilité améliorée concernant la digestibilité accrue du plant de maïs ou d’une partie de plant de maïs ayant la caractéristique de a), b), c), d) ou e) comparativement à un plant de maïs ou à une partie de plant de maïs n’ayant pas cette caractéristique ; et
la F35H non mutée étant sélectionnée dans le groupe composé :

(i) d’une séquence nucléotidique comprenant la séquence de SEQ ID NO: 1, 4 ou 7 ;
(ii) d’une séquence nucléotidique ayant le cDNA de SEQ ID NO: 2, 5 ou 8 ;
(iii) d’une séquence nucléotidique codant pour une séquence d’acide aminé ayant la séquence d’acide aminé de SEQ ID NO: 3, 6 ou 9 ;
(iv) d’une séquence nucléotidique ayant au moins 80 % d’identité avec la séquence de SEQ ID NO: 1, 2, 4, 5, 7 ou 8 ;
(v) d’une séquence nucléotidique codant pour un polypeptide ayant au moins 80 % d’identité avec la séquence de SEQ ID NO: 3, 6 ou 9 ;
(vi) d’une séquence nucléotidique hybridant avec le complément inverse d’une séquence de type tel que défini dans (i), (ii) ou (iii) dans des conditions d’hybridation strictes.

9. Plant de maïs ou partie de plant de maïs produit ou pouvant être produit par le procédé selon la revendication 8.

10. Procédé, plant ou partie de plant selon l’une quelconque des revendications précédentes, dans lequel ledit plant est un plant de maïs, le QTL se trouvant sur le chromosome 9 et comprenant ou étant flanqué par des allèles marqueurs ma61070s01 et ma30168s02, de préférence par des allèles marqueurs ma50827s01 et ma16983s02, plus préférentiellement par des allèles marqueurs ma17117s01 et ma61125s01 ;

ma61070s01 étant un polymorphisme nucléotidique simple (SNP) à la position 121588825 du chromosome 9 référencé pour la ligne PH207, ledit nucléotidique étant A ou T, de préférence un polymorphisme nucléotidique simple (SNP) tel qu’établi dans SEQ ID NO: 13 ; et
ma30168s02 étant un polymorphisme nucléotidique simple (SNP) à la position 139452428 du chromosome 9 référencé pour la ligne PH207, ledit nucléotidique étant A ou G, de préférence un polymorphisme nucléotidique simple (SNP) tel qu’établi dans SEQ ID NO: 14 ; et
ma50827s01 étant un polymorphisme nucléotidique simple (SNP) à la position 137454426 du chromosome 9 référencé pour la ligne PH207, ledit nucléotidique étant A ou G, de préférence un polymorphisme nucléotidique simple (SNP) tel qu’établi dans SEQ ID NO: 15 ; et
ma16983s02 étant un polymorphisme nucléotidique simple (SNP) à la position 137363784 du chromosome 9
référencé pour la ligne PH207, ledit nucléotide étant A ou G, de préférence un polymorphisme nucléotidique simple (SNP) tel qu'établi dans SEQ ID NO: 16 ; et ma17117s01 étant un polymorphisme nucléotidique simple (SNP) à la position 132038900 du chromosome 9 référencé pour la ligne PH207, ledit nucléotide étant A ou G, de préférence un polymorphisme nucléotidique simple (SNP) tel qu'établi dans SEQ ID NO: 17 ; et ma61125s01 étant un polymorphisme nucléotidique simple (SNP) à la position 135947973 du chromosome 9 référencé pour la ligne PH207, ledit nucléotide étant A ou G, de préférence un polymorphisme nucléotidique simple (SNP) tel qu'établi dans SEQ ID NO: 18.

11. Procédé, plant ou partie de plant selon l'une quelconque des revendications précédentes, dans lequel la mutation est une mutation par décalage de cadre ou une mutation non-sens, résulte en une expression réduite ou absente de la séquence nucléotidique ou en une activité enzymatique réduite de la protéine codée, résulte en une séquence de protéine altérée codée par la séquence nucléotidique, ou est une insertion, suppression ou substitution d’au moins un nucléotide dans une zone de codage, dans un signal d’épissage ou dans un élément régulateur.

12. Utilisation de l’acide polynucléique hybridant avec l’une quelconque des séquences SEQ ID NO: 10, 12, 13, 14, 15, 16, 17, ou 18, ou du complément ou de son complément inverse, ou d’un acide polynucléique à allèle spécifique, pour identification d’un plant ou d’une partie de plant ayant une digestibilité améliorée ou pour la sélection d’un plant ou d’une partie de plant ayant une digestibilité améliorée selon l’une quelconque des revendications 3 à 5, de préférence dans le procédé selon la revendication 1 ou 2.

13. Procédé de production d’une matière végétale ensilée d’un aliment pour animaux ayant une digestibilité améliorée, comprenant

(a) la croissance d’une plante selon l’une quelconque des revendications 3 à 5 et 9 ou d’un plant identifié ou identifiable par le procédé selon les revendications 1 ou 2, ou de sa progéniture ayant la digestibilité améliorée telle que définie dans la revendication 1,
(b) la récolte du plant ou d’une partie de celui-ci, et
(c) l’ensilage du plant ou d’une partie de celui-ci provenant de (b).

14. Procédé selon la revendication 13, dans lequel la partie de l’étape (b) et (c) est de la canne de maïs.

15. Matière végétale ensilée ou aliment pour animaux produit par le procédé selon la revendication 13 ou 14.
Figure 1

DNDF
QTL effect on chromosome 9

Mean positive
Mean negative
<table>
<thead>
<tr>
<th>ArbNr</th>
<th>Family</th>
<th>Individual</th>
<th>DNDF Mean per group</th>
</tr>
</thead>
<tbody>
<tr>
<td>WVVP17-51917/002</td>
<td>1</td>
<td>1</td>
<td>A A A A A A A A</td>
</tr>
<tr>
<td>WVVP17-51917/006</td>
<td>1</td>
<td>2</td>
<td>A A A A A A A A</td>
</tr>
<tr>
<td>WVVP17-51918/005</td>
<td>1</td>
<td>3</td>
<td>A A A A A A A A</td>
</tr>
<tr>
<td>WVVP17-51918/008</td>
<td>1</td>
<td>4</td>
<td>A A A A A A A A</td>
</tr>
<tr>
<td>WVVP17-51918/011</td>
<td>1</td>
<td>5</td>
<td>A A A A A A A A</td>
</tr>
<tr>
<td>WVVP17-51918/012</td>
<td>1</td>
<td>6</td>
<td>A A A A A A A A</td>
</tr>
<tr>
<td>WVVP17-51918/016</td>
<td>1</td>
<td>7</td>
<td>A A A A A A A A</td>
</tr>
<tr>
<td>WVVP17-51919/005</td>
<td>1</td>
<td>8</td>
<td>A A A A A A A A</td>
</tr>
<tr>
<td>WVVP17-51916/009</td>
<td>1</td>
<td>9</td>
<td>A A A A A B B B B</td>
</tr>
<tr>
<td>WVVP17-51917/003</td>
<td>1</td>
<td>10</td>
<td>A A A A A B B B B</td>
</tr>
<tr>
<td>WVVP17-51918/001</td>
<td>1</td>
<td>11</td>
<td>A A A A A B B B B</td>
</tr>
<tr>
<td>WVVP17-51918/009</td>
<td>1</td>
<td>12</td>
<td>A A A A A B B B B</td>
</tr>
<tr>
<td>WVVP17-51918/010</td>
<td>1</td>
<td>13</td>
<td>A A A A A B B B B</td>
</tr>
<tr>
<td>WVVP17-51919/011</td>
<td>1</td>
<td>14</td>
<td>A A A A A B B B B</td>
</tr>
<tr>
<td>WVVP17-51920/007</td>
<td>1</td>
<td>15</td>
<td>A A A A A B B B B</td>
</tr>
<tr>
<td>WVVP17-51920/017</td>
<td>1</td>
<td>16</td>
<td>A A A A A B B B B</td>
</tr>
<tr>
<td>WVVP17-51940/003</td>
<td>2</td>
<td>1</td>
<td>A A A A A A A A A</td>
</tr>
<tr>
<td>WVVP17-51941/009</td>
<td>2</td>
<td>2</td>
<td>A A A A A A A A A</td>
</tr>
<tr>
<td>WVVP17-51941/010</td>
<td>2</td>
<td>3</td>
<td>A A A A A A A A A</td>
</tr>
<tr>
<td>WVVP17-51941/015</td>
<td>2</td>
<td>4</td>
<td>A A A A A A A A A</td>
</tr>
<tr>
<td>WVVP17-51943/014</td>
<td>2</td>
<td>5</td>
<td>A A A A A A A A A</td>
</tr>
<tr>
<td>WVVP17-51945/013</td>
<td>2</td>
<td>6</td>
<td>A A A A A A A A A</td>
</tr>
<tr>
<td>WVVP17-51946/003</td>
<td>2</td>
<td>7</td>
<td>A A A A A A A A A</td>
</tr>
<tr>
<td>WVVP17-51947/008</td>
<td>2</td>
<td>8</td>
<td>A A A A A A A A A</td>
</tr>
<tr>
<td>WVVP17-51948/001</td>
<td>2</td>
<td>9</td>
<td>A A A A A A A A A</td>
</tr>
<tr>
<td>WVVP17-51948/005</td>
<td>2</td>
<td>10</td>
<td>A A A A A A A A A</td>
</tr>
<tr>
<td>WVVP17-51948/007</td>
<td>2</td>
<td>11</td>
<td>A A A A A A A A A</td>
</tr>
<tr>
<td>WVVP17-51949/002</td>
<td>2</td>
<td>12</td>
<td>A A A A A A A A A</td>
</tr>
<tr>
<td>WVVP17-51949/011</td>
<td>2</td>
<td>13</td>
<td>A A A A A A A A A</td>
</tr>
<tr>
<td>WVVP17-51949/016</td>
<td>2</td>
<td>14</td>
<td>A A A A A A A A A</td>
</tr>
<tr>
<td>WVVP17-51940/001</td>
<td>2</td>
<td>15</td>
<td>B B B B B B B A A</td>
</tr>
<tr>
<td>WVVP17-51941/008</td>
<td>2</td>
<td>16</td>
<td>B B B B B B B B A</td>
</tr>
<tr>
<td>WVVP17-51941/013</td>
<td>2</td>
<td>17</td>
<td>B B B B B B B B A</td>
</tr>
<tr>
<td>WVVP17-51941/014</td>
<td>2</td>
<td>18</td>
<td>B B B B B B B B A</td>
</tr>
<tr>
<td>WVVP17-51942/006</td>
<td>2</td>
<td>19</td>
<td>B B B B B B B B A</td>
</tr>
<tr>
<td>WVVP17-51942/009</td>
<td>2</td>
<td>20</td>
<td>B B B B B B B B A</td>
</tr>
<tr>
<td>WVVP17-51944/002</td>
<td>2</td>
<td>21</td>
<td>B B B B B B B B A</td>
</tr>
<tr>
<td>WVVP17-51944/003</td>
<td>2</td>
<td>22</td>
<td>B B B B B B B B A</td>
</tr>
<tr>
<td>WVVP17-51944/009</td>
<td>2</td>
<td>23</td>
<td>B B B B B B B B A</td>
</tr>
<tr>
<td>WVVP17-51945/005</td>
<td>2</td>
<td>24</td>
<td>B B B B B B B B A</td>
</tr>
<tr>
<td>WVVP17-51945/006</td>
<td>2</td>
<td>25</td>
<td>B B B B B B B B A</td>
</tr>
<tr>
<td>WVVP17-51946/001</td>
<td>2</td>
<td>26</td>
<td>B B B B B B B B A</td>
</tr>
<tr>
<td>WVVP17-51946/012</td>
<td>2</td>
<td>27</td>
<td>B B B B B B B B A</td>
</tr>
<tr>
<td>WVVP17-51948/011</td>
<td>2</td>
<td>28</td>
<td>B B B B B B B B A</td>
</tr>
<tr>
<td>WVVP17-51949/003</td>
<td>2</td>
<td>29</td>
<td>B B B B B B B B A</td>
</tr>
<tr>
<td>WVVP17-51949/012</td>
<td>2</td>
<td>30</td>
<td>B B B B B B B B A</td>
</tr>
<tr>
<td>WVVP17-51949/017</td>
<td>2</td>
<td>31</td>
<td>B B B B B B B B A</td>
</tr>
</tbody>
</table>
Fig. 4 (continued):

SEQ ID NO: 1  2364  TATCTCGTGTTGCAGGCAGATGAGGCTGCTCTTCAGGAAAATCGGATATGCTACGACAC  2413
SEQ ID NO: 11  2551  TATCTCGTGTTGCAGGCAGATGAGGCTGCTCTTCAGGAAAATCGGATATGCTACGACAC  2600
SEQ ID NO: 1  2414  CCCTCAGCTCGTCAAGGCTGCTCTTCAGGAAAATCGGATATGCTACGACAC  2463
SEQ ID NO: 11  2601  CCCTCAGCTCGTCAAGGCTGCTCTTCAGGAAAATCGGATATGCTACGACAC  2650
SEQ ID NO: 1  2464  AAAAAATGCGTAGAGTTGCTACGACAC  2513
SEQ ID NO: 11  2651  AAAAAATGCGTAGAGTTGCTACGACAC  2700
SEQ ID NO: 1  2514  TGATGCTACTGAGAATTCTGCAAGGTTAAGAAGAACATACGACAC  2563
SEQ ID NO: 11  2701  TGATGCTACTGAGAATTCTGCAAGGTTAAGAAGAACATACGACAC  2750
SEQ ID NO: 1  2564  GAATTCCTTCATTTTGGAAACACAATACGACAC  2613
SEQ ID NO: 11  2751  GAATTCCTTCATTTTGGAAACACAATACGACAC  2800
SEQ ID NO: 1  2614  TCGAGTCGCTACAGTTGCTACGACAC  2663
SEQ ID NO: 11  2801  TCGAGTCGCTACAGTTGCTACGACAC  2850
SEQ ID NO: 1  2664  CCCTCATGCGAGATTTTGGAAACACAATACGACAC  2713
SEQ ID NO: 11  2851  CCCTCATGCGAGATTTTGGAAACACAATACGACAC  2900
SEQ ID NO: 1  2714  AGTTAGGGGCTCTCGCAATTTTTTGGAAACACAATACGACAC  2763
SEQ ID NO: 11  2901  AGTTAGGGGCTCTCGCAATTTTTTGGAAACACAATACGACAC  2950
SEQ ID NO: 1  2764  AAATACAGCTTTCTTGGAAACACAATACGACAC  2813
SEQ ID NO: 11  2951  AAATACAGCTTTCTTGGAAACACAATACGACAC  3000
SEQ ID NO: 1  2814  TTCTCCTAATAATAGCTACGACAC  2863
SEQ ID NO: 11  3001  TTCTCCTAATAATAGCTACGACAC  3050
SEQ ID NO: 1  2864  ACTCCGCGTACGAGCTACGACAC  2913
SEQ ID NO: 11  3051  ACTCCGCGTACGAGCTACGACAC  3100
SEQ ID NO: 1  2914  ATGTTCGCGTACGAGCTACGACAC  2963
SEQ ID NO: 11  3101  ATGTTCGCGTACGAGCTACGACAC  3150
SEQ ID NO: 1  2964  CGAGCCGCTGACTACGACAC  3013
SEQ ID NO: 11  3151  CGAGCCGCTGACTACGACAC  3200
SEQ ID NO: 1  3014  GTAAGATGCTGAACCTCTTGAGCTACGACAC  3063
SEQ ID NO: 11  3201  GTAAGATGCTGAACCTCTTGAGCTACGACAC  3250
SEQ ID NO: 1  3064  GAATTGCGTTAATCGGACAGCTACGACAC  3113
SEQ ID NO: 11  3251  GAATTGCGTTAATCGGACAGCTACGACAC  3300
SEQ ID NO: 1  3114  CACAGTGCTGACGCTACGACAC  3163
SEQ ID NO: 11  3301  CACAGTGCTGACGCTACGACAC  3350
SEQ ID NO: 1  3164  GGTGTGCTGTTAATCGGACAGCTACGACAC  3213
SEQ ID NO: 11  3351  GGTGTGCTGTTAATCGGACAGCTACGACAC  3400
Fig. 4 (continued):

SEQ ID NO: 1  4064  TCCTG GCCACGCCTGCTTGCACGCGTTCGACTGCGGCCTGCGCTGACGCGAG  4113

SEQ ID NO: 11  4251  TCCTG GCCACGCCTGCTTGCACGCGTTCGACTGCGGCCTGCGCTGACGCGAG  4300

SEQ ID NO: 1  4114  GGAAGCTGGAGATGAGCGAGACGTTCCGCGCTGCGCTGCCCAGGCGAG  4163

SEQ ID NO: 11  4301  GGAAGCTGGAGATGAGCGAGACGTTCCGCGCTGCGCTGCCCAGGCGAG  4350

SEQ ID NO: 1  4164  GCCGCTCGCCGCCGCTGCCAGCCACGGCTCGTGGCCGGAAGCTATGCCT  4213

SEQ ID NO: 11  4351  GCCGCTCGCCGCCGCTGCCAGCCACGGCTCGTGGCCGGAAGCTATGCCT  4400

SEQ ID NO: 1  4214  GA  4215

SEQ ID NO: 11  4401  GA  4402
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US 8450471 B [0064]
- US 8440431 B [0064]
- US 8440432 B [0064]
- US 6534261 B [0065]
- US 6607882 B [0065]
- US 6746838 B [0065]
- US 6794136 B [0065]
- US 6824978 B [0065]
- US 6866997 B [0065]
- US 6933113 B [0065]
- US 6979539 B [0065]
- US 7013219 B [0065]
- US 7030215 B [0065]
- US 7220719 B [0065]
- US 7241573 B [0065]
- US 7241574 B [0065]
- US 7585849 B [0065]
- US 7595376 B [0065]
- US 6903185 B [0065]
- US 6479626 B [0065]
- US 8163514 [0066]
- US 8133697 B [0066]
- US 8021867 B [0066]
- US 8119361 B [0066]
- US 8119381 B [0066]
- US 8124369 B [0066]
- US 8129134 B [0066]
- US 8996441 B [0067]
- US 8993233 B [0067]
- US 8697359 B [0067]
- US 8771945 B [0067]
- US 8795965 B [0067]
- US 8865406 B [0067]
- US 8871445 B [0067]
- US 8889356 B [0067]
- US 8889418 B [0067]
- US 8895308 B [0067]
- US 8906616 B [0067]
- US 8932814 B [0067]
- US 8945839 B [0067]
- US 20140310830 A [0067]
- US 105031 [0067]
- US 20140287938 A1 [0067]
- US 213991 [0067]
- US 20140273234 A1 [0067]
- US 293674 [0067]
- US 20140273232 A1 [0067]
- US 290575 [0067]
- US 20140273231 A [0067]
- US 259420 [0067]
- US 20140256046 A1 [0067]
- US 226274 [0067]
- US 20140248702 A1 [0067]
- US 258458 [0067]
- US 20140242700 A1 [0067]
- US 222930 [0067]
- US 20140242699 A1 [0067]
- US 183512 [0067]
- US 20140242664 A1 [0067]
- US 104990 [0067]
- US 20140234972 A1 [0067]
- US 183471 [0067]
- US 20140227787 A1 [0067]
- US 256912 [0067]
- US 20140189896 A1 [0067]
- US 105035 [0067]
- US 20140186958 A [0067]
- US 105017 [0067]
- US 20140186919 A1 [0067]
- US 104977 [0067]
- US 20140186843 A1 [0067]
- US 104900 [0067]
- US 20140179770 A1 [0067]
- US 104837 [0067]
- US 20140179006 A1 [0067]
- US 183486 [0067]
- US 20140170753 A [0067]
- US 183429 [0067]
- US 20150184139 A [0067]
- US 324960 [0067]
- EP 14054414 A [0067]
- EP 2771468 A [0067]
- EP 13818570 [0067]
- EP 2764103 A [0067]
- EP 13824232 [0067]
- EP 2784162 A [0067]
- EP 14170383 [0067]
- WO 2014093661 A [0067]
- WO 2013074743 W [0067]
- WO 2014093694 A [0067]
- WO 2013074790 W [0067]
- WO 2014093595 A [0067]
- WO 2013074611 W [0067]
- WO 2014093718 A [0067]
- WO 2013074825 W [0067]
- WO 2014093709 A [0067]
- WO 2013074812 W [0067]
- WO 2014093622 A [0067]
EP 3 560 330 B1

- US 2013074667 W [0067]
- WO 2014093635 A [0067]
- US 2013074691 W [0067]
- WO 2014093655 A [0067]
- US 2013074736 W [0067]
- WO 2014093712 A [0067]
- US 2013074819 W [0067]
- WO 2014093701 A [0067]
- US 2013074800 W [0067]
- WO 2014018423 A [0067]
- US 2013074148 W [0067]
- US 2014069925 W [0067]
- WO 2015089354 A [0067]
- US 2014069897 W [0067]
- WO 2015089351 A [0067]
- US 2014041804 W [0067]
- WO 2014204724 A [0067]
Non-patent literature cited in the description

- PCR 2: A Practical Approach. 1995 [0039]
- Antibodies, a Laboratory Manual. 1988 [0039]
- Animal Cell Culture. 1987 [0039]
• WANG et al. Genetic screens in human cells using the CRISPR/Cas9 system. Science, 03 January 2014, vol. 343 (6166), 80-84 [0067]
• ABUDAYYEH et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science, 02 June 2016 [0067]
• HIRSCH et al. Plant Cell, 01 November 2016, vol. 28 (11), 2700-2714 [0130]
• HIRSCH et al. Draft Assembly of Elite Inbred Line PH207 Provides Insights into Genomic and Transcriptome Diversity in Maize. Plant Cell, 01 November 2016, vol. 28 (11), 2700-2714 [0132] [0179] [0200]