(19)

(12)

(11) **EP 1 616 013 B1**

EUROPEAN PATENT SPECIFICATION

- (45) Date of publication and mention of the grant of the patent: 27.07.2011 Bulletin 2011/30
- (21) Application number: 04726719.0
- (22) Date of filing: 09.04.2004

- (51) Int Cl.: *C12N 15/82*^(2006.01)
- (86) International application number: PCT/EP2004/003995
- (87) International publication number: WO 2004/090140 (21.10.2004 Gazette 2004/43)
- (54) METHODS AND MEANS FOR INCREASING THE TOLERANCE OF PLANTS TO STRESS CONDITIONS

VERFAHREN UND MITTEL ZUR ERHÖHUNG DER TOLERANZ VON PFLANZEN GEGENÜBER STRESSBEDINGUNGEN

PROCEDES ET ELEMENTS DESTINES A AUGMENTER LA TOLERANCE DE PLANTES PAR RAPPORT A DES CONDITIONS DE STRESS

(84) Designated Contracting States:	(56) References cited:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR	
HU IE IT LI LU MC NL PL PT RO SE SI SK TR	WO-A-03/000898 WO-A-03/008540
	US-A1- 2002 040 490
(30) Priority: 09.04.2003 EP 03076044	
21.08.2003 US 496688 P	 PANDA SATCHIDANANDA ET AL: "tej defines a role for poly(ADP-ribosyl)ation in establishing
(43) Date of publication of application:	period length of the Arabidopsis circadian
18.01.2006 Bulletin 2006/03	oscillator" DEVELOPMENTAL CELL, vol. 3, no. 1
	July 2002 (2002-07), pages 51-61, XP009035930
(73) Proprietor: Bayer BioScience N.V	ISSN: 1534-5807
(73) Proprietor: Bayer BioScience N.V.	
9052 Gent (BE)	ALEXANDER BÜRKLE: "Physiology and
	pathophysiology of poly(ADP-ribosyl)ation"
(72) Inventor: DE BLOCK, Marc	BIOESSAYS, vol. 23, no. 9, pages 795-806,
B-9820 Merelbeke (BE)	XPXP009120869

EP 1 616 013 B1

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description

Field of the invention.

⁵ **[0001]** The present invention relates to the use of poly (ADP-ribose) glycohydrolases in plants to increase the tolerance of plants to adverse growing conditions, including drought, high light intensities, high temperatures, nutrient limitations and the like. Methods and means are provided to produce plants that are tolerant to abiotic stress conditions.

Background to the invention

10

[0002] . Frequently, abiotic stress will lead either directly or indirectly to damage of the DNA of the cells of the plants exposed to the adverse conditions. Genomic damage, if left unrepaired, can lead to cell death. Tolerance to stress conditions exhibited by plants is the result of the ability of the plant cells exposed to the adverse conditions to reduce and/or repair the damage, and to survive.

- ¹⁵ [0003] Plant cells, like other eukaryotic cells, have evolved an elaborate DNA repair system. The activation of poly (ADP-ribose) polymerase (PARP) by DNA strand breaks is often one of the first cellular responses to DNA damage. PARP catalyzes the post-translational modification of proteins by adding successively molecules of ADP-ribose, obtained from the conversion of nicotineamide dinucleotide (NAD), to form multibranched polymers containing up to 200 ADPribose residues (about 40 residues in plants). The dependence of poly(ADP-ribose) synthesis on DNA strand breaks,
- 20 and the presence of PARP in multiprotein complexes further containing key effectors of DNA repair, replication and transcription reactions, strongly suggests that this posttranslational modification is involved in metabolism of nucleic acids, and DNA repair. There are also indications that poly (ADP -ribose) synthesis is involved in regulation of cell cycle and cell death.
- [0004] Poly (ADP-ribosylation) of proteins is transient in living cells. The poly (ADP-ribose) polymers are rapidly turned over, being converted to free ADP-ribose by the exoglycosidase and endoglycosidase activity of poly (ADP-ribose) glycohydrolase (PARG; E.C.3.2.1.143). The most proximal unit of ADP ribose on the protein acceptor is hydrolyzed by the action of another enzyme (ADP-ribosyl protein lyase).

[0005] In addition to this positive (DNA-repair associated) effect of PARP on cell survival, there is also a negative effect of PARP. The process of activating PARP upon DNA damage is associated with a rapid lowering of NAD+ levels,

- ³⁰ since each ADP-ribose unit transferred by PARP consumes one molecule of NAD+. NAD+ depletion in turn results in ATP depletion, because NAD+ resynthesis requires at least (depending on the biosynthesis pathway) three molecules of ATP per molecule of NAD+. Furthermore, NAD+ depletion block glyceraldehyde -3-phosphate dehydrogenase activity, which is required to resynthesize ATP during glycolysis. Finally, NAD+ is a key carrier of electrons needed to generate ATP via electron transport and oxidative phosphorylation.
- ³⁵ **[0006]** The physiological consequence of NAD+ and ATP depletion has been established in the context of DNAdamage induced cell death. It has been shown that the completion of apoptosis is absolutely dependent on the presence of ATP and that, in the absence of this nucleotide, the type of cellular demise switches from apoptosis to necrosis. Since the cellular lysis associates with necrosis generates further damage to neighboring cells it is preferable for multicellular organisms to favor apoptotic cell death rather than necrosis.
- 40 [0007] It is thus very important to consider the delicate balance of positive and negative effects of the poly (ADP ribosyl)ation on the potential of a cell to survive DNA damage.
 [0008] WO 00/04173 describes methods to modulate programmed cell death (PCD) in eukaryotic cells and organisms, particularly plant cells and plants, by introducing of "PCD modulating chimeric genes" influencing the expression and/or apparent activity of endogenous poly-(ADP-ribose) polymerase (PARP) genes. Programmed cell death may be inhibited
- or provoked. The invention particularly relates to the use of nucleotide sequences encoding proteins with PARP activity for modulating PCD, for enhancing growth rate or for producing stress tolerant cells and organisms.
 [0009] PARG encoding genes have been identified in a number of animals such as *Rattus norvegicus* (Accession numbers: NM_031339, NW_043030, AB019366,), *Mus musculus* (Accession numbers: NT_039598, NM_003631, AF079557), *Homo sapiens* (Accession numbers: NT_017696; NM_003631, AF005043), *Bos taurus* (Accession numbers: NT_017696; NM_003631, AF005043), *Bos taurus* (Accession numbers: NT_017696; NM_003631, AF005043), *Bos taurus* (Accession numbers)
- ⁵⁰ bers: NM_174138, U78975) Drosophila melanogaster (Accession number: AF079556) [0010] In plants, a poly(ADP-ribose) glycohydrolase has been identified by map-based cloning of the wild-type gene inactivated in a mutant affected in clock-controlled transcription of genes in *Arabidopsis* and in photoperiod dependent transition from vegetative growth to flowering (*tej*). The nucleotide sequence of the gene can be obtained from nucleotide databases under the accession number AF394690 (Panda et al., 2002 Dev. Cell. 3, 51-61).
- ⁵⁵ **[0011]** US2002/040490 disclosed 999 isolated nucleotide compositions and sequences for *Arabidopsis thaliana* genes, including PARG, which find use in identifying homologous or related genes; in producing compositions that modulate the expression or function of its encoded protein, mapping functional regions of the protein; and in studying associated physiological pathways.

[0012] WO03/000898 describes methods to identify genes, the expression of which are altered in response to pathogen infection, as well as the about 5000 genes and their corresponding promoters identified thereby, of which two sequences (SEQ ID 550 and SEQ ID 3) appear to have high sequence identity with ParG gene sequences.

[0013] WO 03/008540 describes a total of 17506 abiotic stress responsive polynucleotides and polypeptides, as well
 ⁵ as vectors, expression cassettes, host cells, and plants containing such polynucleotides. Also provided are methods for using such polynucleotides and polypeptides, for example, to alter the responsiveness of a plant to abiotic stress.

Summary of the invention

- 10 [0014] The invention provides a method to produce a plant tolerant to stress conditions comprising the steps of providing plant cells with a chimeric gene to create transgenic plant cells, wherein the chimeric gene comprises the following operably linked DNA fragments: a plant-expressible promoter; a DNA region, which when transcribed yields an ParG inhibitory RNA molecule; and a 3' end region involved in transcription termination and polyadenylation. A population of transgenic plant lines is regenerated from the transgenic plant cell; and a stress tolerant plant line is identified within the
- ¹⁵ population of transgenic plant lines. The ParG inhibitory RNA molecule may comprise a nucleotide sequence of at least 20 consecutive nucleotides of the nucleotide sequence of the ParG gene present in the plant cell (the endogenous ParG gene). The ParG inhibitory RNA molecule may also comprise a nucleotide sequence of at least 20 consecutive nucleotides of the complement of the nucleotide sequence of the ParG gene present in the plant cell (the endogenous ParG gene). In yet another embodiment, the parG inhibitory RNA may comprise a sense region comprising a nucleotide sequence
- 20 of at least 20 consecutive nucleotides of the nucleotide sequence of the ParG gene present in the plant cell and an antisense region comprising a nucleotide sequence of at least 20 consecutive nucleotides of the complement of the nucleotide sequence of the ParG gene present in the plant cell, wherein the sense and antisense region are capable of forming a double stranded RNA region comprising said at least 20 consecutive nucleotides. The chimeric gene may further comprise a DNA region encoding a self-splicing ribozyme between said DNA region coding for parG inhibitory
- 25 RNA molecule and the 3' end region. Stress conditions may be selected from heat, drought, nutrient depletion, oxidative stress or high light conditions. **2001** In use the end to end the invention of the invention of the invention of the invention.

[0015] In yet another embodiment of the invention, a method is provided to produce a plant tolerant to stress conditions comprising the steps of providing plant cells with a chimeric gene to create transgenic plant cells, comprising a DNA region, which when transcribed yields an ParG inhibitory RNA molecule, whereby the DNA region comprises a nucleotide

- ³⁰ sequence of at least 21 to 100 nucleotides of a nucleotide sequence encoding a protein comprising the amino acid sequence of SEQ ID No 1, 2 or 16 or at least 21 to 100 nucleotides of a nucleotide sequence of SEQ ID 3, 4, 15 or 23 operably linked to a plant-expressible promoter and a 3' end region involved in transcription termination and polyadenylation; regenerating a population of transgenic plant lines from said transgenic plant cell; and identifying a stress tolerant plant line within the population of transgenic plant lines.
- 35 [0016] The invention also provides DNA molecules comprising a plant-expressible promoter, operably linked to a DNA region, which when transcribed yields an ParG inhibitory RNA molecule, and to a 3' end region involved in transcription termination and polyadenylation. The ParG inhibitory RNA molecule may comprise a nucleotide sequence of at least 20 consecutive nucleotides of the nucleotide sequence of the ParG gene present in the plant cell (the endogenous ParG gene). The ParG inhibitory RNA molecule may also comprise a nucleotide sequence of at least 20 consecutive nucleotides may also comprise a nucleotide sequence of at least 20 consecutive nucleotides.
- 40 of the complement of the nucleotide sequence of the ParG gene present in the plant cell (the endogenous ParG gene). In yet another embodiment, the parG inhibitory RNA may comprise a sense region comprising a nucleotide sequence of at least 20 consecutive nucleotides of the nucleotide sequence of the ParG gene present in the plant cell and an antisense region comprising a nucleotide sequence of at least 20 consecutive nucleotides of the complement of the nucleotide sequence of the ParG gene present in the plant cell, wherein the sense and antisense region are capable of
- ⁴⁵ forming a double stranded RNA region comprising said at least 20 consecutive nucleotides. The chimeric gene may further comprise a DNA region encoding a self-splicing ribozyme between said DNA region coding for parG inhibitory RNA molecule and the 3' end region. The chimeric gene may also comprise a nucleotide sequence of at least 21 to 100 nucleotides of a nucleotide sequence encoding a protein comprising the amino acid sequence of SEQ ID No 1, 2 or 16 or at least 21 to 100 nucleotides of a nucleotide sequence of SEQ ID 3, 4, 15 or 23.
- ⁵⁰ **[0017]** In yet another embodiment, the invention relates to plant cell comprising the DNA molecule of the invention and plants consisting essentially of such plant cells. Seeds and propagating material of such plants comprising the chimeric genes of the invention are also provided.

[0018] The invention also relates to a method for obtaining stress tolerant plants comprising the steps of subjecting a plant cell line or a plant or plant line, to mutagenesis; identifying those plant cells or plants that have a mutation in an endogenous ParG gene resulting in a reduction of the PARG activity; subjecting the identified plant cells or plants to

⁵⁵ endogenous ParG gene resulting in a reduction of the PARG activity; subjecting the identified plant cells or plants to stress conditions and identifying plant cells or plants that tolerate said stress conditions better than control plants. Alternatively, plant cells or plants may be selected for resistance to ParG inhibitors, such as gallotannines, and further treated as described in this paragraph.

Brief description of the figures.

[0019] Figure 1. Schematic representation of the poly-ADP ribose polymeratization / depolymerization cycle by the action of PARP/PARG in a eukaryotic cell.

⁵ **[0020]** Figure 2. Diagram of the NAD+ and ATP content of *Arabidopsis* lines under high light stress. Dark boxes represent NAD content under high light conditions expressed as percentage of the value for NAD content determined under low light conditions. Light boxes represent ATP content under high light conditions expressed as percentage of the value for ATP content determined under low light conditions.

[0021] Figure 3. Diagram of the NAD+ and ATP content of corn lines under nitrogen depletion stress. Dark boxes represent NAD content while light boxes represent ATP content.

Detailed description of preferred embodiments

- [0022] The invention is based, on the one hand, on the demonstration that cells from stress resistant plant lines comprising a chimeric gene reducing the PARP gene expression, exhibited a higher NAD/ATP content under adverse conditions than cells from untransformed plant lines. On the other hand, it has been observed that silencing of the expression of PARG encoding gene in tobacco using a transient silencing RNA vector based on satellite viruses resulted in a similar phenotype as that observed for silencing of PARP encoding gene using the same silencing system. Furthermore, silencing the expression of PARG encoding gene in plants, such as Arabidopsis and tobacco, resulted in plants
- 20 that were more resistant to stress conditions, such as e.g. those imposed by high light conditions. [0023] Although not intending to limit the invention to a specific mode of action, it is expected that silencing of PARG gene expression results in a similar phenotype as silencing of PARP gene expression for the following reasons. As can be seen from Figure 1, polymerization of ADP ribose catalyzed by PARP, consuming NAD, is followed by depolymerization of poly ADP ribose, catalyzed by PARG. Poly ADP ribosylation of the PARP protein itself results in inactivation of the
- PARP protein. The speed at which the ADP ribose polymerization / depolymerization cycle occurs in plant cells, leading to NAD depletion and consequently ATP depletion, can be slowed down or stopped by reduction of the PARP gene expression or of the enzymatic activity of PARP. As a result, plant cells, and plants comprising such cells are more resistant to adverse conditions. The data provided here indicate that a similar effect can be obtained through slowing down or stopping the cycle by reduction of the PARG gene expression or PARG activity.
- 30 [0024] The invention relates to reduction of plant cell death in response to adverse environmental conditions, and consequently to enhanced stress resistance, by altering the level of expression of ParG genes, or by altering the activity or the apparent activity of PARG proteins in that plant cell. Conveniently, the level of expression of ParG genes may be controlled genetically by introduction of chimeric genes altering the expression of ParG genes, or by altering the endogenous PARG encoding genes, including the expression signals.
- ³⁵ **[0025]** In one embodiment of the invention, a method for producing plants tolerant to stress conditions or adverse growing conditions is provided comprising the steps of:
 - providing plant cells with a chimeric gene to create transgenic plant cells, wherein the chimeric gene comprises the following operably linked DNA fragments:
- 40

45

-

- a plant-expressible promoter;
 - a DNA region, which when transcribed yields a ParG inhibitory RNA molecule;
- a 3' end region involved in transcription termination and polyadenylation;
- regenerating a population of transgenic plant lines from said transgenic plant cell; and
 - identifying a stress tolerant plant line within said population of transgenic plant lines.

[0026] As used herein "a stress tolerant plant" or "a plant tolerant to stress conditions or adverse growing conditions" is a plant (particularly a plant obtained according to the methods of the invention), which, when subjected to adverse growing conditions for a period of time, such as but not limited to drought, high temperatures, limited supply of nutrients (particularly nitrogen), high light intensities, grows better than a control plant not treated according to the methods of the invention. This will usually be apparent from the general appearance of the plants and may be measured e.g., by increased biomass production, continued vegetative growth under adverse conditions or higher seed yield. Stress tolerant plant have a broader growth spectrum, i.e. they are able to withstand a broader range of climatological and other abiotic

55 changes, without yield penalty. Biochemically, stress tolerance may be apparent as the higher NAD⁺-NADH /ATP content and lower production of reactive oxygen species of stress tolerant plants compared to control plants under stress condition. Stress tolerance may also be apparent as the higher chlorophyll content, higher photosynthesis and lower chlorophyll fluorescence under stress conditions in stress tolerant plants compared to control plants under the same conditions.

[0027] It will be clear that it is also not required that the plant be grown continuously under the adverse conditions for the stress tolerance to become apparent. Usually, the difference in stress tolerance between a plant or plant cell according to the invention and a control plant or plant cell will become apparent even when only a relatively short period of adverse conditions is encountered during growth.

- 5 [0028] As used herein, a "ParG inhibitory RNA molecule" is an RNA molecule that is capable of decreasing the expression of the endogenous PARG encoding genes of a plant cell, preferably through post-transcriptional silencing. It will be clear that even when a ParG inhibitory RNA molecule decreases the expression of a PARG encoding gene through post-transcriptional silencing, such an RNA molecule may also exert other functions within a cell, such as e.g. guiding DNA methylation of the endogenous ParG gene, again ultimately leading to decreased expression of the PARG
- 10 encoding gene. Also, expression of the endogenous PARG encoding genes of a plant cell may be reduced by transcriptional silencing, e.g., by using RNAi or dsRNA targeted against the promoter region of the endogenous ParG gene. [0029] As used herein, a "PARG encoding gene" or a "ParG gene" is a gene capable of encoding a PARG (poly ADP ribose glycohydrolase) protein, wherein the PARG protein catalyzes the depolymerization of poly ADP-ribose, by releasing free ADP ribose units either by endoglycolytic or exoglycolytic action.
- ¹⁵ **[0030]** PARG encoding genes may comprise a nucleotide sequence encoding a protein comprising the amino acid sequence of SEQ ID No 1 (*Arabidopsis thaliana*) or of SEQ ID No 2 (*Solanum tuberosum*) or of SEQ ID No 16 (*Oryza sativa*) or parts thereof, such as a DNA fragment comprising the nucleotide sequence of SEQ ID No. 3 or SEQ ID 4 or SEQ ID No 15. or SEQ ID 23 (Zea *mays*).
- [0031] However, it will be clear that the skilled person can isolate variant DNA sequences from other plant species, by hybridization with a probe derived from the above mentioned PARG encoding genes from plant species, or even with a probe derived from the above mentioned PARG encoding genes from animal species. To this end, the probes should preferably have a nucleotide sequence comprising at least 40 consecutive nucleotides from the coding region of those mentioned PARG encoding genes sequences, preferably from the coding region of SEQ ID No 3 or SEQ ID No 4. The probes may however comprise longer regions of nucleotide sequences derived from the ParG genes, such as about 50,
- 60, 75, 100, 200 or 500 consecutive nucleotides from any of the mentioned ParG genes. Preferably, the probe should comprise a nucleotide sequence coding for one of the highly conserved regions of the catalytic domain, which have been identified by aligning the different PARG proteins from animals. These regions are also present in the identified PARG protein from *Arabidopsis thaliana* and comprise the amino acid sequence LXVDFANXXXGGG (corresponding to SEQ ID No 1 from the amino acid at position 252 to the amino acid at position 264; X may be any amino acid)
- 30 LXVDFANXXXGGGXXXXGXVQEEIRF (corresponding to SEQ ID No 1 from the amino acid at position 252 to the amino acid at position 277) or LXVDFANXXXGGGXXXXGXVQEEIRFXXXPE (corresponding to SEQ ID No 1 from the amino acid at position 252 to the amino acid at position 282), TGXWGCGXFXGD (corresponding to SEQ ID No 1 from the amino acid at position 449 to the amino acid at position 460) or TGXWGCGAFXGDXXLKXXXQ (corresponding to SEQ ID No 1 from the amino acid at position 449 to the amino acid at position 468). Other conserved regions have the amino
- ³⁵ acid sequence DXXXRXXXAIDA (corresponding to SEQ ID No 1 from the amino acid at position 335 to the amino acid at position 344) or REXXKAXXGF (corresponding to SEQ ID No 1 from the amino acid at position 360 to the amino acid at position 369) or GXXXXSXYTGY (corresponding to SEQ ID No 1 from the amino acid at position 303 to the amino acid at position 313). Hybridization should preferably be under stringent conditions.
- [0032] "Stringent hybridization conditions" as used herein mean that hybridization will generally occur if there is at least 95% and preferably at least 97% sequence identity between the probe and the target sequence. Examples of stringent hybridization conditions are overnight incubation in a solution comprising 50% formamide, 5 x SSC (150 mM NaCl, 15 mM trisodium citrate), 50 mM sodium phosphate (pH 7.6), 5x Denhardt's solution, 10% dextran sulfate, and 20 µg/ml denatured, sheared carrier DNA such as salmon sperm DNA, followed by washing the hybridization support in 0.1 x SSC at approximately 65°C, e.g. for about 10 min (twice). Other hybridization and wash conditions are well

⁴⁵ known and are exemplified in Sambrook et al, Molecular Cloning: A Laboratory Manual, Second Edition, Cold Spring Harbor, NY (1989), particularly chapter 11.
 [0033] Alternatively, ParG encoding genes or parts thereof may also be isolated by PCR based techniques, using as primers oligonucleotides comprising at least 20 consecutive nucleotides from a nucleotide sequence of the mentioned PARG encoding genes or the complement thereof. Such primers may comprise a nucleotide sequence encoding a

- ⁵⁰ conserved region, as mentioned above, or be complementary to such a nucleotide sequence. Oligonucleotides which may be used for that purpose may comprise the nucleotide sequence of either or SEQ ID No.5, SEQ ID No 6., SEQ ID No. 7 or SEQ ID No. 8. Oligonucleotides which may be used may also be degenerate, such as the oligonucleotide primers of SEQ ID No 17, SEQ ID No 18, SEQ ID No 19; SEQ ID No 20, SEQ ID No 21 or SEQ ID No 22. **100211** Specific DCD fragments from Dark and the obtained buying combinations of the oligonucleotides.
- [0034] Specific PCR fragments from ParG genes may e.g., be obtained by using combinations of the oligonucleotides having the nucleotide sequence of SEQ ID No. 5 and SEQ ID No 6 using e.g., *Arabidopsis* genomic DNA or cDNA as a template DNA, or by using combinations of the oligonucleotides having the nucleotide sequence of SEQ ID No. 7 and SEQ ID No 8 using e.g., potato genomic DNA or cDNA as a template DNA, under stringent annealing conditions.
 [0035] The isolated engugence may enguge a functional BABC protein or a part theorem.

[0035] The isolated sequences may encode a functional PARG protein or a part thereof. Preferably the isolated

sequences should comprise a nucleotide sequence coding for one or more of the highly conserved regions from the catalytic domain of PARG proteins as mentioned elsewhere.

[0036] However, for the purpose of the invention is not required that the isolated sequences encode a functional ParG protein nor that a complete coding region is isolated. Indeed, all that is required for the invention is that a chimeric gene

⁵ can be designed or produced, based on the identified or isolated sequence of the endogenous ParG gene from a plant, which is capable of producing a ParG inhibitory RNA. Several alternative methods are available to produce such a ParG inhibitory RNA molecule.

[0037] In one embodiment, the ParG inhibitory RNA molecule encoding chimeric gene is based on the so-called antisense technology. In other words, the coding region of the chimeric gene comprises a nucleotide sequence of at

- ¹⁰ least 20 consecutive nucleotides of the complement of the nucleotide sequence of the endogenous ParG gene of the plant cell or plant, the expression of which is targeted to be reduced. Such a chimeric gene may be conveniently constructed by operably linking a DNA fragment comprising at least 20 nucleotides from the isolated or identified ParG gene, or part of such a gene, in inverse orientation, to a plant expressible promoter and 3'end formation region involved in transcription termination and polyadenylation. It will be immediately clear that there is no need to know the exact
- ¹⁵ nucleotide sequence or complete nucleotide sequence of such a DNA fragment from an isolated ParG gene. [0038] In another embodiment the ParG inhibitory RNA molecule encoding chimeric gene is based on the so-called co-suppression technology. In other words, the coding region of the chimeric gene comprises a nucleotide sequence of at least 20 consecutive nucleotides of the nucleotide sequence of the endogenous ParG gene of the plant cell or plant, the expression of which is targeted to be reduced. Such a chimeric gene may be conveniently constructed by operably
- 20 linking a DNA fragment comprising at least 20 nucleotides from the isolated or identified ParG gene, or part of such a gene, in direct orientation, to a plant expressible promoter and 3'end formation region involved in transcription termination and polyadenylation. Again it is not required to know the exact nucleotide sequence of the used DNA fragment from the isolated ParG gene.

[0039] The efficiency of the above mentioned chimeric genes in reducing the expression of the endogenous ParG gene may be further enhanced by inclusion of DNA elements which result in the expression of aberrant, unpolyadenylated ParG inhibitory RNA molecules. One such DNA element suitable for that purpose is a DNA region encoding a self-splicing ribozyme, as described in WO 00/01133.

[0040] The efficiency or the above mentioned chimeric genes in reducing the expression of the endogenous ParG gene of a plant cell may also be further enhanced by including into one plant cell simultaneously a chimeric gene as herein described encoding a antisense ParG inhibitory RNA molecule and a chimeric gene as herein described encoding

³⁰ herein described encoding a antisense ParG inhibitory RNA molecule and a chimeric gene as herein described encoding a sense ParG inhibitory RNA molecule, wherein said antisense and sense ParG inhibitory RNA molecules are capable of forming a double stranded RNA region by base pairing between the mentioned at least 20 consecutive nucleotides, as described in WO 99/53050.

[0041] As further described in WO 99/53050, the sense and antisense ParG inhibitory RNA regions, capable of forming

- ³⁵ a double stranded RNA region may be present in one RNA molecule, preferably separated by a spacer region. The spacer region may comprise an intron sequence. Such a chimeric gene may be conveniently constructed by operably linking a DNA fragment comprising at least 20 nucleotides from the isolated or identified endogenous ParG gene, the expression of which is targeted to be reduced, in an inverted repeat, to a plant expressible promoter and 3'end formation region involved in transcription termination and polyadenylation. To achieve the construction of such a chimeric gene, use can be made of the vectors described in WO 02/059294
- ⁴⁰ use can be made of the vectors described in WO 02/059294
 [0042] An embodiment of the invention thus concerns a method for obtaining a stress tolerant plant line comprising the steps of
- providing plant cells with a chimeric gene to create transgenic plant cells, wherein the chimeric gene comprises the
 following operably linked DNA fragments:
 - a plant-expressible promoter;
 - a DNA region, which when transcribed yields a ParG inhibitory RNA molecule comprising a nucleotide sequence of at least 20 consecutive nucleotides of the nucleotide sequence of the ParG gene present in said plant cell; or
 - a DNA region, which when transcribed yields a ParG inhibitory RNA molecule comprising a nucleotide sequence
 of at least 20 consecutive nucleotides of the complement of the nucleotide sequence of the ParG gene present
 in said plant cell; or
 - a DNA region, which when transcribed yields a ParG inhibitory RNA molecule comprising a sense region comprising a nucleotide sequence of at least 20 consecutive nucleotides of the nucleotide sequence of the ParG gene present in said plant cell and an antisense region comprising a nucleotide sequence of at least 20 consecutive nucleotides of the complement of the nucleotide sequence of the ParG gene present in said plant cell, wherein said sense and antisense region are capable of forming a double stranded RNA region comprising said at least 20 consecutive nucleotides.

50

- a 3' end region involved in transcription termination and polyadenylation;
- regenerating a population of transgenic plant lines from said transgenic plant cell; and
- identifying a stress tolerant plant line within said population of transgenic plant lines.
- 5

10

[0043] As used herein "comprising" is to be interpreted as specifying the presence of the stated features, integers, steps or components as referred to, but does not preclude the presence or addition of one or more features, integers, steps or components, or groups thereof. Thus, e.g., a nucleic acid or protein comprising a sequence of nucleotides or amino acids, may comprise more nucleotides or amino acids than the actually cited ones, i.e., be embedded in a larger nucleic acid or protein. A chimeric gene comprising a DNA region which is functionally or structurally defined, may

comprise additional DNA regions etc.

[0044] It will thus be clear that the minimum nucleotide sequence of the antisense or sense RNA region of about 20 nt of the ParG coding region may be comprised within a larger RNA molecule, varying in size from 20 nt to a length equal to the size of the target gene.

- 15 [0045] The mentioned antisense or sense nucleotide regions may thus be about from about 21 nt to about 5000 nt long, such as 21 nt, 40 nt, 50 nt, 100nt, 200 nt, 300nt, 500nt, 1000 nt, 2000 nt or even about 5000 nt or larger in length. [0046] Moreover, it is not required for the purpose of the invention that the nucleotide sequence of the used inhibitory ParG RNA molecule or the encoding region of the chimeric gene, is completely identical or complementary to the endogenous ParG gene the expression of which is targeted to be reduced in the plant cell. The longer the sequence,
- 20 the less stringent the requirement for the overall sequence identity is. Thus, the sense or antisense regions may have an overall sequence identity of about 40 % or 50% or 60 % or 70% or 80% or 90 % or 100% to the nucleotide sequence of the endogenous ParG gene or the complement thereof. However, as mentioned antisense or sense regions should comprise a nucleotide sequence of 20 consecutive nucleotides having about 100% sequence identity to the nucleotide sequence of the endogenous ParG gene. Preferably the stretch of about 100 % sequence identity should be about 50,
- 25 75 or 100 nt.

[0047] For the purpose of this invention, the "sequence identity" of two related nucleotide sequences, expressed as a percentage, refers to the number of positions in the two optimally aligned sequences which have identical residues (x100) divided by the number of positions compared. A gap, i.e. a position in an alignment where a residue is present in one sequence but not in the other is regarded as a position with non-identical residues. The alignment of the two

30 sequences is performed by the Needleman and Wunsch algorithm (Needleman and Wunsch 1970) Computer-assisted sequence alignment, can be conveniently performed using standard software program such as GAP which is part of the Wisconsin Package Version 10.1 (Genetics Computer Group, Madison, Wisconsin, USA) using the default scoring matrix with a gap creation penalty of 50 and a gap extension penalty of 3.

[0048] It will be clear that whenever nucleotide sequences of RNA molecules are defined by reference to nucleotide 35 sequence of corresponding DNA molecules, the thymine (T) in the nucleotide sequence should be replaced by uracil (U). Whether reference is made to RNA or DNA molecules will be clear from the context of the application.

[0049] It will also be clear that chimeric genes capable of producing inhibitory ParG genes for a particular ParG gene in a particular plant variety or plant species, may also be used to inhibit ParG gene expression in other plant varieties or plant species. Indeed, when sufficient homology exists between the ParG inhibitory RNA region and the ParG gene,

40 or when the ParG genes share the same stretch of 19 nucleotides, expression of those other genes will also be downregulated.

[0050] In view of the potential role of ParG in nucleic acid metabolism, it may be advantageous that the expression of the endogenous ParG gene by the ParG inhibitory RNA is not completely inhibited. Downregulating the expression of a particular gene by gene silencing through the introduction of a chimeric gene encoding ParG inhibitory RNA will

- 45 result in a population of different transgenic lines, exhibiting a distribution of different degrees of silencing of the ParG gene. The population will thus contain individual transgenic plant lines, wherein the endogenous ParG gene is silenced to the required degree of silencing. A person skilled in the art can easily identify such plant lines, e.g. by subjecting the plant lines to a particular adverse condition, such a high light intensity, oxidative stress, drought, heat etc. and selecting those plants which perform satisfactory and survive best the treatment.
- 50 [0051] As used herein, the term "promoter" denotes any DNA which is recognized and bound (directly or indirectly) by a DNA-dependent RNA-polymerase during initiation of transcription. A promoter includes the transcription initiation site, and binding sites for transcription initiation factors and RNA polymerase, and can comprise various other sites (e.g., enhancers), at which gene expression regulatory proteins may bind.
- [0052] The term "regulatory region", as used herein, means any DNA, that is involved in driving transcription and 55 controlling (i.e., regulating) the timing and level of transcription of a given DNA sequence, such as a DNA coding for a protein or polypeptide. For example, a 5' regulatory region (or "promoter region") is a DNA sequence located upstream (i.e., 5') of a coding sequence and which comprises the promoter and the 5'-untranslated leader sequence. A 3' regulatory region is a DNA sequence located downstream (i.e., 3') of the coding sequence and which comprises suitable transcription

termination (and/or regulation) signals, including one or more polyadenylation signals.

5

30

[0053] In one embodiment of the invention the promoter is a constitutive promoter. In another embodiment of the invention, the promoter activity is enhanced by external or internal stimuli (inducible promoter), such as but not limited to hormones, chemical compounds, mechanical impulses, abiotic or biotic stress conditions. The activity of the promoter may also regulated in a temporal or spatial manner (tissue-specific promoters; developmentally regulated promoters).

- **[0054]** For the purpose of the invention, the promoter is a plant-expressible promoter. As used herein, the term "plantexpressible promoter" means a DNA sequence which is capable of controlling (initiating) transcription in a plant cell. This includes any promoter of plant origin, but also any promoter of non-plant origin which is capable of directing transcription in a plant cell, i.e., certain promoters of viral or bacterial origin such as the CaMV35S (Hapster et al., 1988),
- the subterranean clover virus promoter No 4 or No 7 (WO9606932), or T-DNA gene promoters but also tissue-specific or organ-specific promoters including but not limited to seed-specific promoters (e.g., WO89/03887), organ-primordia specific promoters (An et al., 1996), stem-specific promoters (Keller et al., 1988), leaf specific promoters (Hudspeth et al., 1989), mesophyl-specific promoters (such as the light-inducible Rubisco promoters), root-specific promoters (Keller et al., 1989), tuber-specific promoters (Keil et al., 1989), vascular tissue specific promoters (Peleman et al., 1989),
- ¹⁵ stamen-selective promoters (WO 89/10396, WO 92/13956), dehiscence zone specific promoters (WO 97/13865) and the like.

[0055] Methods for the introduction of chimeric genes into plants are well known in the art and include *Agrobacteri-um*-mediated transformation, particle gun delivery, microinjection, electroporation of intact cells, polyethyleneglycol-mediated protoplast transformation, electroporation of protoplasts, liposome-mediated transformation, silicon-whiskers

- 20 mediated transformation etc. The transformed cells obtained in this way may then be regenerated into mature fertile plants. [0056] The transgenic plant cells and plant lines according to the invention may further comprise chimeric genes which will reduce the expression of PARP genes as described in WO 00/04173. These further chimeric genes may be introduced e.g. by crossing the transgenic plant lines of the current invention with transgenic plants containing PARP gene expression reducing chimeric genes. Transgenic plant cells or plant lines may also be obtained by introducing or transforming the
- 25 chimeric genes of the invention into transgenic plant cells comprising the PARP gene expression reducing chimeric genes or vice versa. Alternatively, the PARP and PARG inhibitory RNA regions may be encoded by one chimeric gene and transcribed as one RNA molecule.

[0057] The chimeric genes of the invention (or the inhibitory RNA molecules corresponding thereto) may also be introduced into plant cells in a transient manner, e.g using the viral vectors, such as viral RNA vectors as described in WO 00/63397 or WO 02/13964.

[0058] Having read this specification, it will be immediately clear to the skilled artisan, that mutant plant cells and plant lines, wherein the PARG activity is reduced may be used to the same effect as the transgenic plant cells and plant lines described herein. Mutants in ParG gene of a plant cell or plant may be easily identified using screening methods known in the art, whereby chemical mutagenesis, such as e.g., EMS mutagenesis, is combined with sensitive detection methods

- 35 (such as e.g., denaturing HPLC). An example of such a technique is the so-called "Targeted Induced Local Lesions in Genomes" method as described in McCallum et al, Plant Physiology 123 439-442 or WO 01/75167. However, other methods to detect mutations in particular genome regions or even alleles, are also available and include screening of libraries of existing or newly generated insertion mutant plant lines, whereby pools of genomic DNA of these mutant plant lines are subjected to PCR amplification using primers specific for the inserted DNA fragment and primers specific
- for the genomic region or allele, wherein the insertion is expected (see e.g. Maes et al., 1999, Trends in Plant Science, 4, pp 90-96).
 IOPEOL Plant cell lines and plant lines may also be subjected to mutagenesis by selection for resistance to ParG

[0059] Plant cell lines and plant lines may also be subjected to mutagenesis by selection for resistance to ParG inhibitors, such as gallotannines . (Ying, et al. (2001). Proc. Natl. Acad. Sci. USA 98(21), 12227-12232; Ying, W., Swanson, R.A. (2000). NeuroReport 11 (7), 1385-1388.

- ⁴⁵ **[0060]** Thus, methods are available in the art to identify plant cells and plant lines comprising a mutation in the ParG gene. This population of mutant cells or plant lines can then be subjected to different abiotic stresses, and their phenotype or survival can be easily determined. Additionally, the NAD and/or the ATP content of the stressed cells can be determined and compared to results of such determinations of unstressed cells. In stress tolerant cells, the reduction of NAD content under stress conditions should when compared with unstressed cells, should be lower than for corresponding control cells.
- ⁵⁰ **[0061]** It is also an object of the invention to provide plant cells and plants containing the chimeric genes or the RNA molecules according to the invention. Gametes, seeds, embryos, either zygotic or somatic, progeny or hybrids of plants comprising the chimeric genes of the present invention, which are produced by traditional breeding methods are also included within the scope of the present invention.
- [0062] The plants obtained by the methods described herein may be further crossed by traditional breeding techniques with other plants to obtain stress tolerant progeny plants comprising the chimeric genes of the present invention.
- **[0063]** The methods and means described herein are believed to be suitable for all plant cells and plants, both dicotyledonous and monocotyledonous plant cells and plants including but not limited to cotton, Brassica vegetables, oilseed rape, wheat, corn or maize, barley, alfalfa, peanuts, sunflowers, rice, oats, sugarcane, soybean, turf grasses, barley,

rye, sorghum, sugar cane, vegetables (including chicory, lettuce, tomato, zucchini, bell pepper, eggplant, cucumber, melon, onion, leek), tobacco, potato, sugarbeet, papaya, pineapple, mango, *Arabidopsis thaliana*, but also plants used in horticulture, floriculture or forestry (poplar, fir, eucalyptus etc.).

- **[0064]** The following non-limiting Examples describe method and means for increasing stress tolerance in plants according to the invention.
- **[0065]** Unless stated otherwise in the Examples, all recombinant DNA techniques are carried out according to standard protocols as described in Sambrook et al. (1989) Molecular Cloning: A Laboratory Manual, Second Edition, Cold Spring Harbor Laboratory Press, NY and in Volumes 1 and 2 of Ausubel et al. (1994) Current Protocols in Molecular Biology, Current Protocols, USA. Standard materials and methods for plant molecular work are described in Plant Molecular
- ¹⁰ Biology Labfax (1993) by R.D.D. Croy, jointly published by BIOS Scientific Publications Ltd (UK) and Blackwell Scientific Publications, UK. Other references for standard molecular biology techniques include Sambrook and Russell (2001) Molecular Cloning: A Laboratory Manual, Third Edition, Cold Spring Harbor Laboratory Press, NY, Volumes I and II of Brown (1998) Molecular Biology LabFax, Second Edition, Academic Press (UK). Standard materials and methods for polymerase chain reactions can be found in Dieffenbach and Dveksler (1995) PCR Primer: A Laboratory Manual, Cold
- ¹⁵ Spring Harbor Laboratory Press, and in McPherson at al. (2000) PCR Basics: From Background to Bench, First Edition, Springer Verlag, Germany.
 - **[0066]** Throughout the description and Examples, reference is made to the following sequences:
 - [0067] SEQ ID N°1: amino acid sequence of the ParG protein from Arabidopsis thaliana.
 - [0068] SEQ ID N°2: amino acid sequence of part of the ParG protein from *Solanum tuberosum*.
 - [0069] SEQ ID N°3: nucleotide sequence encoding the ParG protein from Arabidopsis thaliana.
 - [0070] SEQ ID N°4: nucleotide sequence encoding the part of the ParG protein from Solanum tuberosum.

[0071] SEQ ID N°5: nucleotide sequence of an oligonucleotide primer suitable for PCR amplification of part of a ParG protein encoding DNA fragment.

- [0072] SEQ ID N°6: nucleotide sequence of an oligonucleotide primer suitable for PCR amplification of part of a ParG protein encoding DNA fragment.
 - **[0073]** SEQ ID N°7: nucleotide sequence of an oligonucleotide primer suitable for PCR amplification of part of a ParG protein encoding DNA fragment.
 - **[0074]** SEQ ID N°8: nucleotide sequence of an oligonucleotide primer suitable for PCR amplification of part of a ParG protein encoding DNA fragment.
- ³⁰ **[0075]** SEQ ID N°9: nucleotide sequence of the T-DNA vector containing the ParG expression reducing chimeric gene based on the *Arabidopsis* ParG gene sequence.
 - **[0076]** SEQ ID N°10: amino acid sequence of conserved sequence 1 of PARG proteins.
 - [0077] SEQ ID N°11: amino acid sequence of conserved sequence 2 of PARG proteins.
 - [0078] SEQ ID N°12: amino acid sequence of conserved sequence 3 of PARG proteins.
- ³⁵ [0079] SEQ ID N°13: amino acid sequence of conserved sequence 4 of PARG proteins.
 - [0080] SEQ ID N°14: amino acid sequence of conserved sequence 5 of PARG proteins.
 - **[0081]** SEQ ID N°15: nucleotide sequence of the ParG protein from *Oryza sativa*.
 - [0082] SEQ ID N°16: amino acid sequence of the ParG protein from Orvza sativa.
- [0083] SEQ ID N° 17: nucleotide sequence of an oligonucleotide primer PG1 suitable for PCR amplification of part of 40 a ParG protein encoding DNA fragment.
 - **[0084]** SEQ ID N° 18: nucleotide sequence of an oligonucleotide primer PG2 suitable for PCR amplification of part of a ParG protein encoding DNA fragment.
 - **[0085]** SEQ ID N° 19: nucleotide sequence of an oligonucleotide primer PG3 suitable for PCR amplification of part of a ParG protein encoding DNA fragment.
- ⁴⁵ **[0086]** SEQ ID N° 20: nucleotide sequence of an oligonucleotide primer PG4 suitable for PCR amplification of part of a ParG protein encoding DNA fragment.
 - **[0087]** SEQ ID N° 21: nucleotide sequence of an oligonucleotide primer PG5 suitable for PCR amplification of part of a ParG protein encoding DNA fragment.
 - **[0088]** SEQ ID N° 22: nucleotide sequence of an oligonucleotide primer PG6 suitable for PCR amplification of part of a ParG protein encoding DNA fragment.
 - [0089] SEQ ID N°23: nucleotide sequence encoding a ParG protein from Zea mays.
 - **[0090]** SEQ ID N°24: nucleotide sequence of a T-DNA vector comprising a chimeric gene capable of reducing PARG expression
 - **[0091]** SEQ ID N°25: nucleotide sequence of a T-DNA vector comprising a chimeric gene capable of reducing PARG expression
 - [0092] Examples

5

20

50

Example 1. Analysis of the influence of stress on energy production efficiency of transgenic stress tolerant plant lines containing PARP gene expression reducing chimeric genes.

[0093] Hypocotyls of transgenic *Brassica napus* plants comprising PARP gene expression reducing chimeric genes as described in WO 00/04173 were cultivated for 5 days on a growth medium. Explants were then transferred to liquid medium comprising 30 mg/L aspirin or acetylsalicylic acid (resulting in oxidative stress conditions) for one day. In control experiments, hypocotyls of non-transgenic *Brassica napus* plants N90-740 were cultivated on the same growth medium and then incubated for one day in liquid medium comprising 30 mg/L aspirin. In addition, hypocotyls of both the transgenic lines and the control line were cultivated on the same growth medium without aspirin.

- ¹⁰ **[0094]** After the cultivation period, the ATP content of 125 explants was determined for each experiment. Additionally, the oxygen consumed in 3 hours by 125 explants was determined. The results are summarized in Table 1. The standard error of the mean was less than 6%. Whereas, the ratio of moles ATP per mg consumed oxygen in the control plants decreased in the control plants when oxidative stress was applied, the same ratio in the stress tolerant transgenic plant lines actually increased under stress conditions, and was considerably higher (about 24%) than in the control plants.
- ¹⁵ The stress resistant transgenic lines thus maintained an constant energy production efficiency, whereas the control lines exhibited an decreased energy production efficiency. In addition, superoxide production, expressed as a percentage of superoxide production in control plants not subjected to the oxidative stress, did not increase in stress tolerant plants subjected to stress conditions. [0095]
- 20

	Plant line	Stress	moles ATP per	O ₂ mg/L	moles ATP	Superoxide
25			125 explants	consumed in 3 hrs by 125 explants	mg consumed O ₂	production
	N90-740	None	12.4 x 10 ⁻⁷	2.96	4.19 x 10 ⁻⁷	100%
	(control)	30mg/L aspirin	13.2 x 10 ⁻⁷	4.06	3.25 x 10 ⁻⁷	167%
30	Transgenic line	None	9.3 x 10 ⁻⁷	2.33	3.99 x 10 ⁻⁷	108%
		30mg/L aspirin	11.4 x 10 ⁻⁷	2.82	4.04 x 10 ⁻⁷	100%

Table 1. Influence of stress on energy production efficiency of 5 days cultured Brassica napus hypocotyl explants.

- [0096] In another experiment, the NAD+ and ATP content of 4 different transgenic *Arabidopsis* lines comprising PARP gene expression reducing chimeric genes as described in WO 00/04173 were determined under high and low light conditions, and compared to the values obtained for a non transformed control line under the same conditions. The 4 different lines exhibited different degrees of stress resistance as exhibited e.g. by their ability to withstand heat and/or drought conditions. The values obtained for the NAD and ATP contents under high light stress are expressed as a percentage of the values for the NAD and ATP contents under low light conditions, and are plotted in Figure 2.
- [0097] The results show that high light stress leads to a significant NAD reduction in control plant cells and in the transgenic plant line which is the least stress resistant. The more stress resistant the transgenic plant lines are, the less signicifant the NAD reduction is under high light stress conditions.
 [0098] In another experiment, the NAD+ and ATP content of a segregating population resulting from a cross between

[0098] In another experiment, the NAD+ and ATP content of a segregating population resulting from a cross between transgenic corn lines comprising PARP gene expression reducing chimeric genes as described in WO 00/04173 and an untransformed corn line, were determined under conditions of nutrient (nitrogen) depletion, and compared to the values obtained for a non transformed control line under the same conditions. Figure 3 is a graphic representation of the of the obtained results. Hemizygous and azygous lines were discriminated by verification for the presence of the selectable marker gene. The NAD and ATP content was significantly higher in the hemizygous, stress tolerant plants than in the untransformed control plants or the azygous plants.

50

55

Example 2. Construction of ParG gene expression reducing chimeric genes.

[0099] To reduce the expression of the PARG gene e.g. in *Arabidopsis* and related plants, a chimeric gene was constructed which is capable expressing a dsRNA comprising both a sense and antisense region which can form a double stranded RNA. Such dsRNA is very effective in reducing the expression of the genes with which is shares sequence homology, by post-transcriptional silencing. The chimeric gene comprises the following DNA fragments:

• A promoter region from Cauliflower mosaic Virus (CaMV 35S);

- A DNA fragment comprising 163 bp from the ParG gene from *Arabidopsis thaliana* in direct orientation (Genbank Accession number AF394690 from nucleotide position 973 to 1135);
- A DNA fragment encoding intron 2 from the pdk gene from Flaveria;
- The DNA fragment comprising 163 bp from the ParG gene from *Arabidopsis thaliana* in inverted orientation (Genbank Accession number AF394690 from nucleotide position 973 to 1135)
- A fragment of the 3' untranslated end from the octopine synthetase gene from Agrobacterium tumefaciens.

[0100] This chimeric gene was introduced in a T-DNA vector, between the left and right border sequences from the T-DNA, together with a selectable marker gene providing resistance to the herbicide phosphinotricin.

- ¹⁰ **[0101]** To reduce the expression of the PARG gene e.g. in potatoes and related plants, a chimeric gene is constructed which is capable expressing a dsRNA comprising both a sense and antisense region of a cDNA sequence from potato, that is capable of encoding a protein having high sequence identity with the N-terminal part of the *Arabidopsis* PARG protein. The chimeric gene comprises the following DNA fragments:
- ¹⁵ A promoter region from Cauliflower mosaic Virus (CaMV 35S);
 - A DNA fragment comprising a sequence of at least 100 bp from ParG homologue from *Solanum tuberosum* in direct orientation (Genbank Accession number BE340510);
 - A DNA fragment encoding intron 2 from the pdk gene from Flaveria;
 - The DNA fragment comprising the sequence of at least 100 bp from ParG homologue from *Solanum tuberosum* in inverted orientation (Genbank Accession number BE340510);
 - A fragment of the 3' untranslated end from the octopine synthetase gene from Agrobacterium tumefaciens

[0102] This chimeric gene is introduced in a T-DNA vector, between the left and right border sequences from the T-DNA, together with a selectable marker gene providing resistance to the herbicide phosphinotricin.

25

35

20

5

Example 3. Analysis of transgenic plant lines comprising ParG gene expression reducing chimeric genes.

[0103] The chimeric genes of Example 2 are introduced into *Arabidopsis* or potato respectively, by Agrobacterium mediated transformation.

- ³⁰ **[0104]** The population of obtained transgenic lines is subjected to the following stress conditions, together with control plants:
 - Increased heat for a period of days (greenhouse) or hours (in vitro)
 - Drought for a period of days
 - High light conditions for a period of days
 - Nutrient depletion

[0105] Individual plant lines surviving well the above mendioned stress conditions are selected.

[0106] The NAD content and ATP content for the above mentioned plants is determined under control and stress conditions.

Example 4. Quantitative determination of NAD, ATP and superoxide radicals in plant cells.

[0107] Quantification of ATP in plant tissues was done basically as decribed by Rawyler et al. (1999), Plant Physiol.
 120, 293-300. The assay was used for the determination of the ATP content of hypocotyl explants that were cultured for 4-5 days on A2S3 medium or 2 weeks old *in vitro* cultured *Arabidopsis* plants. All manipulations are performed on crushed ice unless otherwhise indicated.

[0108] ATP extraction

- 50 Freeze plant material with liquid nitrogen
 - 100 hypocotyl explants
 - ± 700mg *Arabidopsis* plants (roots + shoots) (about 32-37 18-days old C24 plants)
- ⁵⁵ Put frozen hypocotyls in mortar and add 6ml of 6% perchloric acid.
 - Extraction can be done at room temperature using a pestle. After extraction, put samples as soon as possible on ice.
 - Centrifuge at 24,000g (Sorvall, SS34 rotor at 14,000rpm) for 10min. at 4°C.
 - The supernatant is neutralized with 5M K₂CO₃ (add 350µl of 5M K₂CO₃ to 3ml of supernatant).

- KClO₄ is removed by spinning as described above.

[0109] Quantitative bioluminescent determination of ATP

- The ATP bioluminescent assay kit from Sigma is used (FL-AA).
 - Dilute extract 6000 x (about 6 mL extract from which 100µl is taken, that is diluted 1000 times) The dilutions are made with the 'ATP assay mix dilution buffer' (FL-AAB) of the ATP bioluminescent assay kit
 - The amount of light that is produced is measured with the TD-20/20 luminometer of Turner Designs (Sunnyvale, USA).
 - Standard curve: disolve ATP standard of kit (FL-AAS) in 10ml of water (2x10⁻⁶ moles)

10

5

[0110] Quantification of NAD+ and NADH in plant tissues was performed, essentially as described by Karp et al. (1983) or Filipovic et al. (1999) on the following plant material:

Brassica napus: 150 5-days cultured hypocotyl explants/sample *Arabidopsis*: 1000mg 18-days old in vitro grown plants (shoots + roots)/sample (corresponds to ±60 C24 plants)

[0111] Assay solution

(A) For measuring NADH: 25mM potassium phosphate buffer pH7 0.1mM DTT 3μ M FMN (Fluka, 83810) 30μ M n-decanal (Sigma, D-7384)

(B) For measuring NAD⁺ + NADH:

25

20

idem as for measuring NADH alone + 2µg/mL alcohol dehydrogenase (Roche, 102 717)

[0112] Extraction

- *30* Freeze with liquid nitrogen
 - Put frozen plant material in cooled mortar (cooled at -20°C) and add 5mL extraction buffer
 - Grind material using a pestle
 - Centrifuge at 24 000g (Sorvall, SS34 rotor at 14 000rpm) for 15 minutes at 4°C
 - Take 1 mL of supernatant for analysis
- 35

[0113] Assay NADH

- 390µL of assay solution A
- 40 + 10μL extract
 - + 2μL NAD(P)H:FMN oxidoreductase
 - + 100μL luciferase solution

NAD++ NADH

45

55

- 390µL of assay solution B
- + 10µL extract
- 2 minutes at room temperature
- + $2\mu L NAD(P)H$:FMN oxidoreductase
- 50 + 100μL luciferase solution

The amount of light that is produced is measured with the TD-20/20 luminometer of Turner Designs (Sunnyvale, USA) *NADH-standard*

NADH stock solution: 1 mM (7.1mg/10mL H₂O) NADH: disodium salt, Roche, 107 735

Dilution series in 10mM potassium phosphate buffer pH7: (10⁻²); $5x10^{-3}$; $2x10^{-3}$; 10^{-3} ; $5x10^{-4}$ Add 10μ L of dilutions in 390μ L of assay solution A and perform reaction Make standard curve

[0114] Superoxide radicals production was measured by quantifying the reduction of XTT as described in De Block and De Brouwer (2002) Plant Physiol. Biochem. 40, 845-852

[0115] BRASSICA NAPUS [0116] Media and reaction buffers

Sowing medium (medium 201):

 Half concentrated Murashige and Skoog salts 2% sucrose pH 5.8
 0.6% agar (Difco Bacto Agar) 250mg/l triacillin

10

Callus inducing medium A2S3:

MS medium, 0.5g/l Mes (pH 5.8), 3% sucrose, 40mg/l adenine-SO₄, 0.5% agarose, 1mg/l 2,4-D, 0.25mg/l NAA, 1mg/l BAP, 250mg/l triacillin

15

Incubation medium:

25mM K-phosphate buffer pH5.8 2% sucrose

20 1 drop Tween20 for 25ml medium

Reaction buffer:

50mM K-phosphate buffer pH7.4

²⁵ 1 mM sodium,3'-{1-[phenylamino-carbonyl]-3,4-tetrazolium}-bis(4-methoxy-6-nitro) = XTT (bts, Germany, cat n° 2525)

1 drop Tween20 for 25ml buffer

- [0117] Sterilization of seeds pregermination of seeds growing of the seedlings. Seeds are soaked in 70% ethanol for 2 min, then surface-sterilized for 15 min in a sodium hypochlorite solution (with about 6% active chlorine) containing 0.1% Tween20. Finally, the seeds are rinsed with 11 of sterile tap water. Incubate seeds for at least one hour in sterile tap water (to allow diffusion from seeds of components that may inhibit germination). Seeds are put in 250ml erlenmeyer flasks containing 50ml of sterile tap water (+ 250mg/l triacillin). Shake for about 20 hours. Seeds from which the radicle is protruded are put in Vitro Vent containers from Duchefa containing about 125ml of sowing medium (10 seeds/vessel,
- ³⁵ not too many to reduce loss of seed by contamination). The seeds are germinated at \pm 24°C and 10-30:Einstein/s⁻¹m⁻² with a daylength of 16h.

[0118] Preculture of the hypocotyl explants and induction of stress

- 12-14 days after sowing, the hypocotyls are cut in about 7-10mm segments.
- The hypocotyl explants (25 hypocotyls/Optilux Petridish, Falcon S1005, Denmark) are cultured for 5 days on medium A2S3 at 25°C (at 10-30□Einstein/s⁻¹m⁻²).

[0119] XTT-assay

- ⁴⁵ Transfer 150 hypocotyl explants to a 50ml Falcon tube.
 - Wash with reaction buffer (without XTT).
 - Add 20mL reaction buffer + XTT.
 - (explants have to be submerged, but do not vacuum infiltrate)
 - Incubate in the dark at 26°C for about 3hours
- ⁵⁰ Measure the absorption of the reaction medium at 470nm

[0120] ARABIDOPSIS THALIANA

[0121] Media and reaction buffers

Plant medium:

55

Half concentrated Murashige and Skoog salts B5 vitamins 1.5% sucrose pH 5.8 0.7% Difco agar

Incubation medium:

5

10mM K-phosphate buffer pH5.8 2% sucrose 1 drop Tween20 for 25ml medium

10 Reaction buffer:

50mM K-phosphate buffer pH7.4 1 mM sodium,3'-{1-[phenylamino-carbonyl]-3,4-tetrazolium}-bis(4-methoxy-6-nitro) = XTT (bts, Germany, cat n° 2525) 1 drop Tween20 for 25ml buffer

15

[0122] Arabidopsis plants

- Arabidopsis lines: control lines to test
 Sterilization of Arabidopsis seeds: 2min. 70% ethanol 10 min. bleach (6% active chlorine) + 1drop Tween 20 for 20ml solution wash 5 times with sterile tap water
 - Pregermination of seeds:

25

40

45

55

In 9cm Optilux Petridishes (Falcon) containing 12ml sterile tap water. Low light overnight to 24 hours.

 Growing of *Arabidopsis* plants Seeds are sown in Intergrid Tissue Culture disks of Falcon (nr. 3025) containing ±125ml of plant medium: 1 seed/grid.
 Plants are grown at 24°C 30μEinstein s⁻¹m⁻² 16hours light - 8hours dark for about 3 weeks (before bolting)

35 [0123] XTT-assay

Control condition (no stress)

 Harvest shoots (roots included) from agar plates and put them directly in a 50ml Falcon tube containing reaction buffer (without XTT)

Stressed shoots

- Transfer shoots to 50ml Falcon tubes containing reaction buffer (without XTT)
- Replace reaction buffer with buffer containing XTT (40mL/tube)
- Shoots have to be submerged, but do not vacuum infiltrate
- Incubate in the dark at 26°C for about 3hours
- Measure the absorption of the reaction medium at 470nm
- ⁵⁰ [0124] Quantification of respiration by measuring oxygen consumption using a Clark polarographic electrode was done in the following way:
 [0125] Plant material

Brassica napus

150-200* hypocotyl explants Cultured for 5 days at 25°C (*cfr.* protocol vigour assay) * 150 explants error <10%; 200 explants error <6%

Arabidopsis

For C24 ± 1000mg* *in vitro* plants (shoots + roots) (corresponds with -50 18-days old plants) Pregerminate seeds before sowing Grow for 18 days at 24°C (*cfr.* protocol *in vitro* growth Arabidopis) * for error <8%

10

20

30

35

5

[0126] Incubation media

Brassica napus

1525mM K-phosphate buffer pH5.82% sucroseTween20 (1 drop/25ml)

Arabidopsis

10mM K-phosphate buffer pH5.8 2% sucrose Tween20 (1 drop/25ml)

- Before use, aerate (saturate with oxygen) medium well by stirring for at least a few hours[0127] Assay
 - Put explants in 100ml glass bottle (Schott, Germany) filled with incubation medium. Put the same weight of shoots in each bottle (± 700mg)
 - Fill bottle to overflowing and close tightly (avoid large air bubbles)
 - Fill also a bottle with incubation medium that does not contain explants (blanco)
 - Incubate at 24°C at low light for: 3-4 hours (Brassica napus) 3 hours (Arabidopsis)
 - Shake gently during incubation (to avoid oxygen depletion of medium around explants)
 - Measure oxygen concentration (mg/l) of incubation media using an hand-held dissolved oxygen meter (Cyberscan
 - DO 310; Eutech Instruments, Singapore)
 - mg/l consumed oxygen = [oxygen] blanco [oxygen] sample.

Example 5. Analysis of transgenic plant lines comprising ParG gene expression reducing chimeric genes.

⁴⁰ **[0128]** The chimeric genes of Example 2 were introduced into *Arabidopsis* an Nicotiana tabacum c.v. Petit Havana SR1 by *Agrobacterium* mediated transformation.

[0129] Transgenic seeds were germinated on a medium containing MS salts/2; B5 vitamins; 1,5% sucrose; pH5.8 and 0.7% Difco agar. Germinated seeds were subject to low light (photosynthetic photon flux of about 30 μ mol m⁻¹ s⁻¹ for 14 to 18 days, after which the light intensity was increased about 6-fold (photosynthetic photon flux of about 190 μ

- ⁴⁵ mol m⁻¹ s⁻¹). After 1 day, the NAD and NADH contents were determined using the enzymatic cycling method (Karp et al. (1983) Anal. Biochem. 128, pp 175-180). A portion of the seedlings were cultivated further under high light conditions for about 3 to about days, after which the damage was scored. Damage was visible as darkening of the young leaves and shoot tip, bleaching of older leaves and growth retardation. The results are summarized in Table 1 for Arabidopsis and in Table 2 for tobacco.
- ⁵⁰ [0130]

Table 1. Analysis of Arabidopsis (Columbia). $\pm R$ indicates that some dark pigmentation was observed. ND: not

determined

55		High light tolerance	NAD+NADH content in 1 gram of tissue (10 ⁻³ µM)	% TTC-reducing capacity vs control
	Non-transgenic control	S	17.3	100

		High light tolerance	NAD+NADH content in 1 gram of tissue (10 ⁻³ μM)	% TTC-reducing capacity vs control									
5	Transgenic line 9	R	28.2	ND									
	Transgenic line 10	R	31.7	ND									
	Transgenic line 11	±R	26.5	ND									
10	Transgenic line 12	S	19.4	ND									
10	Transgenic line 26	R	33.2	55									
	Transgenic line 27	S	21.3	100									
	Transgenic line 28	±R	26.5	75									
15	Transgenic line 29	S	17.7	102									
	Transgenic line 30	R	28.3	66									

(continued)

[0131]

Table 2. Analysis of Nicotiana tabacum c.v. Petit Havana SR1. ±R indicates that some dark pigmentation was observed. R/S indicates that he resistance phenotype was not very clear.

Γ		High light tolerance	% TTC-reducing capacity vs control
	Non-transgenic control	S	100
	Transgenic line 1	R/S	88
	Transgenic line 2	±R	79
	Transgenic line 3	R	53

30

40

45

20

25

[0132] There is a positive correlation between the resistance to high light stress in the transgenic plants and the NAD+NADH content of the cells. An inverse correlation can be seen between TTC reducing capacity and high light tolerance.

³⁵ Example 6. Construction of ParG gene expression reducing chimeric genes suited for use in cereal plants.

[0133] To reduce the expression of the PARG gene e.g. in cereals such as rice or corn (maize) and related plants, a chimeric gene is constructed which is capable expressing a dsRNA comprising both a sense and antisense region of nucleotide sequence from rice, that is capable of encoding a protein having high sequence identity with PARG protein encoding nucleotide sequences. The chimeric gene comprises the following DNA fragments:

- A promoter region from Cauliflower mosaic Virus (CaMV 35S);
- A DNA fragment comprising a sequence of at least 100 bp from ParG homologue from *Oryza sativa* (SEQ ID No 15) in direct orientation;
- A DNA fragment encoding intron 2 from the pdk gene from Flaveria;
- A DNA fragment comprising a sequence of at least 100 bp from ParG homologue from *Oryza sativa* (SEQ ID No 15) in inverted orientation;
- A fragment of the 3' untranslated end from the octopine synthetase gene from Agrobacterium tumefaciens.
- 50

55

[0134] This chimeric gene is introduced in a T-DNA vector, between the left and right border sequences from the T-DNA, together with a selectable marker gene providing resistance to e.g. the herbicide phosphinotricin.

[0135] To reduce the expression of the PARG gene e.g. in cereals such as rice or corn (maize) and related plants, a chimeric gene is constructed which is capable expressing a dsRNA comprising both a sense and antisense region of nucleotide sequence from rice, that is capable of encoding a protein having high sequence identity with PARG protein encoding nucleotide sequences. The chimeric gene comprises the following DNA fragments:

A promoter region from Cauliflower mosaic Virus (CaMV 35S);

- A DNA fragment comprising a sequence of at least 100 bp from ParG homologue from Zea *mays* (SEQ ID No 23) in direct orientation;
- A DNA fragment encoding intron 2 from the pdk gene from Flaveria;
- A DNA fragment comprising a sequence of at least 100 bp from ParG homologue from Zea *mays* (SEQ ID No 23) in inverted orientation;
- A fragment of the 3' untranslated end from the octopine synthetase gene from Agrobacterium tumefaciens.

[0136] This chimeric gene is introduced in a T-DNA vector, between the left and right border sequences from the T-DNA, together with a selectable marker gene providing resistance to e.g. the herbicide phosphinotricin. The nucleotide sequence of two examples of such T-DNA vectors comprising two different chimeric gences as described in the previous paragraph is represented in SEQ ID Nos 24 and 25.

Example 7. Analysis of transgenic plant lines comprising ParG gene expression reducing chimeric genes.

¹⁵ [0137] The chimeric genes of Example 6 are introduced into rice or corn respectively, by Agrobacterium mediated transformation.
 [0138] The population of obtained transgenic lines is subjected to the following stress conditions, together with control

[0138] I he population of obtained transgenic lines is subjected to the following stress conditions, together with control plants:

- Increased heat for a period of days (greenhouse) or hours (in vitro)
 - Drought for a period of days
 - High light conditions for a period of days
 - Nutrient depletion
- [0139] Individual plant lines surviving well the above mentioned stress conditions, or at least one thereof, are selected.
 [0140] The NAD content and ATP content for the above mentioned plants is determined under control and stress conditions.

SEQUENCE LISTING

30

5

10

[0141]

<110> Bayer BioScience N.V. De Block, Marc

35

<120> Methods and means for increasing the tolerance of plants to stress conditions.

<130> BCS 03 2002 WO1

40 <150> EP03076044.1 <151> 2003-04-09

> <150> US 60/496,688 <151> 2003-08-21

- <160> 25
 - <170> PatentIn version 3.1
- 50 <210> 1 <211> 548 <212> PRT <213> Arabidopsis thaliana
- 55 <400>1

•

	Met 1	Glu	Asn	Arg	Glu 5	Asp	Leu	Asn	Ser	Ile 10	Leu	Pro	Tyr	Leu	Pro 15	Leu
	Val	Ile	Arg	Ser 20	Ser	Ser	Leu	Tyr	Trp 25	Pro	Pro	Arg	Val	Val 30	Glu	Ala
5	Leu	Lys	Ala 35	Met	Ser	Glu	Gly	Pro 40	Ser	His	Ser		Val 45	Asp	Ser	Gly
	Glu	Val 50	Leu	Arg	Gln	Ala	İle 55	Phe	Asp	Met	Arg	Arg 60	Ser	Leu	Ser	Phe
	Ser 65	Thr	Leu	Glu	Pro	Ser 70	Ala	Ser	Asn	Gly	Tyr 75	Ala	Phe	Leu	Phe	Asp 80
10	Glu	Leu	Ile	Asp	Glu 85	Гла	Glu	Ser	rha	Arg 90	Trp	Phe	Asp	Glu	Ile 95	Ile
	Pro	Ala	Leu	Ala 100	Ser	Leu	Leu	Leu	Gln 105	Phe	Pro	Ser	Leu	Leu 110	Glu	Val
15	His	Phe	Gln 115	Asn	Ala	Asp		Ile 120	Val	Ser	Gly	Ile	Lys 125	Thr	Gly	Leu
10	Arg	Leu 130	Leu	Asn	Ser	Gln	Gln 135	Ala	Gly	Ile	Val	Phe 140	Leu	Ser	Gln	Glu
	Leu 145	Ile	Gly	Ala	Leu	Leu 150	Ala	Суз	Ser	Phe	Phe 155	Суз	Leu	Phe	Pro	Asp 160
20	Asp	Asn	Arg	Gly	Ala 165	Lys	His	Leu	Pro	Val 170	Ile	Asn	Phe	Asp	His 175	Leu
	Phe	Ala	Ser	Leu 180	Tyr	Ile	Ser	Tyr	Ser 185	Gln	Ser	Gln	Glu	Ser 190	Lys	Ile
	Arg	Cys	Ile 195	Met	His	Tyr	Phe	Glu 200	Arg	Phe	Cys	Ser	Cys 205	Val	Pro	Ile
25	Gly	Ile 210	Val	Ser	Phe	Glu	Arg 215	Lys	Ile	Thr	Ala	Ala 220	Pro	Asp	Ala	Asp
	Phe 225	Trp	Ser	Lys	Ser	Asp 230	Val	Ser	Leu	Cys	Ala 235	Phe	Lys	Val	His	Ser 240
	Phe	Gly	Leu	Ile	Glu 245	Asp	Gln	Pro	Asp	Asn 250	Ala	Leu	Glu	Val	Asp 255	Phe
30	Ala	Asn	Lys	Tyr 260	Leu	Gly	Gly	Gly	Ser 265	Leu	Ser	Arg	Gly	Cys 270	Val	Gln
	Glu	Glu	Ile	Arg	Phe	Met	Ile	Asn	Pro	Glu	Leu	Ile	Ala	Gly	Met	Leu

			275					280					285			
	Phe	Leu 290	Pro	Arg	Met	Asp	Asp 295	Asn	Glu	Ala	Ile	Glu 300	Ile	Val	Gly	Ala
_	Glu 305	Arg	Phe	Ser	Сув	Tyr 310	Thr	Gly	Tyr	Ala	Ser 315	Ser	Phe	Arg	Phe	Ala 320
	Gly	Glu	Tyr	Ile	Asp 325	Lys	Lys	Ala	Met	Asp 330	Pro	Phe	Lys	Arg	Arg 335	Arg
	Thr	Arg	Ile	Val 340	Ala	Ile	Asp	Ala	Leu 345	Cys	Thr	Pro	Lys	Met 350	Arg	His
10	Phe	Lys	Asp 355	Ile	Cys	Leu	Leu	Arg 360	Glu	Ile	Asn	Lys	Ala 365	Leu	Суз	Gly
	Phe	Leu 370	Asn	Cys	Ser	ГÀа	Ala 375	Trp	Glu	His	Gln	Asn 380	Ile	Phe	Met	Asp
	Glu 385	Gly	Asp	Asn	Glu	Ile 390	Gln	Leu	Val	Arg	Asn 395	Gly	Arg	Asp	Ser	Gly 400
15	Leu	Leu	Arg	Thr	Glu 405	Thr	Thr	Ala	Ser	His 410	Arg	Thr	Pro	Leu	Asn 415	Азр
	Val	Glu	Met	Asn 420	Arg	Glu	Lys	Pro	Ala 425	Asn	Asn	Leu	Ile	Arg 430	Asp	Phe
	Tyr	Val	Glu 435	Gly	Val	Asp	Asn	Glu 440	Asp	His	Glu	Asp	Asp 445	Gly	Val	Ala
20	Thr	Gly 450	Asn	Trp	Gly	Cys	Gly 455	Val	Phe	Gly	Gly	Asp 460	Pro	Glu	Leu	Гла
	Ala 465	Thr	Ile	Gln	Trp	Leu 470	Ala	Ala	Ser	Gln	Thr 475	Arg	Arg	Pro	Phe	Ile 480
25	Ser	Tyr	Tyr	Thr	Phe 485	Gly	Val	Glu	Ala	Leu 490	Arg	Asn	Leu	Asp	Gln 495	Val
	Thr	Lys	Trp	Ile 500	Leu	Ser	His	Lys	Trp 505	Thr	Val	Gly	Asp	Leu 510	Trp	Asn
	Met	Met	Leu 515	Glu	Tyr	Ser	Ala	Gln 520	Arg	Leu	Tyr	Lув	Gln 525		Ser	Val
30	-	530			Trp	Leu	Leu 535	Pro	Ser	Leu	Ala	Thr 540	Thr	Asn	Lys	Ala
	Ile 545	Gln	Pro	Pro												

<210> 2

35 <211> 169 <212> PRT <213> Solanum tuberosum

<400> 2

40

45

50

		Mot	a1	1	7	a 1	N an	¥7-1	tura	C	T] 0	T	Dwo	Dho	T	D	17-7
		1				5				Ser	10					15	
					20					Trp 25					30		•
5		Leu	Lys	Ala 35	Leu	Ser	Glu	Gly	Pro 40	His	Tyr	Ser	Asn	Val 45	Àsn	Ser	Gly
		Gln	Val 50		Phe	Leu	Ala	Ile 55	Ser	Asp	Ile	Arg	Asn 60	Ser	Leu	Ser	Leu
10		Pro 65			Ser	Ile	Ser 70		Ser	Ala	Ser	Asp 75		Phe	Ser	Leu	Leu 80
10		Phe	Asp	Asp	Leu	Ile 85	Pro	Arg	Asp	Glu	Ala 90	Val	Lys	Trp	Phe	Lys 95	Glu
15		Val	Val	Pro	Lys 100	Met	Ala	Asp	Leu	Leu 105	Leu	Arg	Leu	Pro	Ser 110	Leu	Leu
		Glu	Ala	His 115	Tyr	Glu	Lys	Ala	Asp 120	Gly	Gly	Ile	Val	Lys 125	Gly	Val	Asn
20																	
	Thr	Gly 130	Leu	Arg	Leu	Leu	Glu 135	Ser	Gln	Gln	Pro	Gly 140	Ile	Val	Phe	Leu	
25	Ser 145	Gln	Glu	Leu	Val	Gly 150	Ala	Leu	Leu	Ala	Cys 155	Ser	Phe	Phe	Суз	T yr 160	
	Ser	Leu	Pro	Met	Ile 165	Glu	Val	Ser	Val								
30																	
	<210> 3 <211> 164 <212> DN <213> Ara	A	osis th	aliana	a												
35	<400> 3	•															
40																	
45																	
50																	

	atggagaatc gcgaagatct ta				60
	tcgtcgctgt attggccgcc gc				120
	tctcacagec aagttgactc ag				180
	teettatett tetetaetet eg				240
5	gaattgattg atgagaaaga at				300
	agettaette tacagtttee at				360
	gttagtggaa tcaaaaccgg tc				420
	ctcagccagg agttgattgg ag				480
	gataatagag gtgcaaaaca cc				540 600
10	tatataagtt atagtcaaag to				660
	aggttttgct.cctgcgtgcc ta cctgatgctg atttctggag ca				720
	tttgggttaa ttgaagatca ac				780
	ctcggaggtg gttccctaag ta				840
	cctgaattaa tcgctggcat gc				900
15	atagttggtg cggaaagatt tt				960
15	ggtgagtaca ttgacaaaaa gg				1020
	gcaattgatg cattatgtac ac				1080
	gaaattaata aggcactatg tg				1140
	atattcatgg atgaaggaga ta				1200
	cttctgcgta cagaaactac tg	cgtcacac cga	aactccac taaatgatgt	tgagatgaat	1260
20	agagaaaagc ctgctaacaa tc	ttatcaga gat	ttttatg tggaaggagt	tgataacgag	1320
	gatcatgaag atgatggtgt cg	cgacaggg aat	ttgggggat gtggtgtttt	tggaggagac	1380
	ccagagctaa aggctacgat ac				1440
	tcatattaca cctttggagt ag				1500
	ctttcccata aatggactgt tg				1560
25	aggetetaca agcaaaccag tg		tettgge tacttecate	tctagctacc	1620
	accaacaaag ctatccagcc go	cttga			1647
30 35 40	<pre><211> 598 <212> DNA <213> Solanum tuberosum <400> 4 gcaatggaga atagagaaga cg tcatcttctc ttttctggcc gc cctcattaca gcaatgttaa ct aattcccttt cactacctga tt ttatttgatg atttaattcc ta aaaatggcgg attgctatt gc gatggtggaa ttgttaaagg ag ggcattgttt tcctcagtca gg tattccctac caatgataga gg attgaagtgc attcttcact att </pre>	cgctagtt gtt ccggccaa gto cttcaatt tco gggatgaa gct ggttgcct tco tcaacact ggt aattagtc ggt tatctgta tga	gaagcac tgaaagccct cetettee tegeaatete cetetteg etteagaegg gttaaat ggtteaaaga cttattgg aggeteaeta cetteget tattggaate getette ttgeatgtte accagtat gaegagaaat	ctctgaaggc cgacattcgg attttctctc agtggtgccg tgagaaggct acaacagcct cttcttttgc ttgaaaataa	60 120 180 240 300 360 420 480 540 598
45					
50	<210> 5 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> oligonucleotide primer ParGAt1	I			
55	<400> 5	oottto 07			
	ggatcccctg caggacaaaa aggcaatgga to	cettte 37			
	<210> 6				

	<211> 39 <212> DNA <213> Artificial Sequence
5	<220> <223> oligonucleotide primer ParGAt2 <400> 6
	gcacgaatte geggeegegg tgeteecaag cettgetae 39
10	<210> 7 <211> 39
	<212> DNA
	<213> Artificial Sequence
15	<220> <223> oligonucleotide primer ParGSt1 <400> 7
	ggatcccctg caggctcact atgagaaggc tgatggtgg 39
20	<210> 8
	<211> 43 <212> DNA
	<213> Artificial Sequence
25	<220> <223> oligonucleotide primer ParGSt2
	<400> 8
	gcacgaattc gcggccgcgt catactgatc atacagatac ctc 43
30	<210> 9 <211> 13466
	<212> DNA <213> Artificial Sequence
35	
35	<220> <223> nucleotide sequence of pTVE428 <220>
	<221> misc_feature <222> (198)(222)
40	<223> Right T-DNA border
	<220>
	<221> misc_feature <222> (983)(273)
45	<223> 3' ocs (3' untranslated end of octopine synthase gene)
	<220>
	<221> misc_feature <222> (995)(1155)
50	<223> part of poly (ADP-ribose) glycohydrolase
	<220> <221> misc_feature
<i></i>	<222> (1929)(1188)
55	<223> intron 2 from the Pdk gene of Flaveria
	<220> <221> misc_feature

	<222> (2122)(1962) <223> part of poly (ADP-ribose) glycohydrolase	
	<220>	
5	<221> misc_feature	
-	<222> (3476)(2131)	
	<223> 35S promoter region from Cauliflower Mosaic Virus	
	<220>	
10	<221> misc_feature	
	<222> (3948)(3737)	
	<223> 3' untranslated end of gene 7 from Agrobacterium tumefaciens	
	<220>	
15	<221> misc_feature	
	<222> (4521)(3970)	
	<223> bar coding region	
	-000	
20	<220>	
20	<221> misc_feature	
	<222> (6247)(4522) <223> PSSuAra promoter region	
	<220>	
25	<221> misc_feature	
	<222> (6415)(6439)	
	<223> left border region of T-DNA of Agrobacterium tumefaciens	
	<400> 9	
30		
	agattegaag eteggteeeg tgggtgttet gtegtetegt tgtacaaega aateeattee	60
	cattecgege teaagatgge tteceetegg cagtteatea gggetaaate aatetageeg	120 180
	acttgtccgg tgaaatgggc tgcactccaa cagaaacaat caaacaaaca tacacagcga cttattcaca cgcgacaaat tacaacggta tatatcctgc cagtactcgg ccgtcgaccg	240
35	cqgtaccccg gaattaaget tgcatgeetg caggteetge tgageetega catgttgteg	300
00	caaaattege cetggaceeg cecaaegatt tgtegteact gteaaggttt gacetgeact	360
	tcatttgggg cccacataca ccaaaaaaat gctgcataat tctcggggca gcaagtcggt	420
	tacccqqccq ccgtgctgga ccgggttgaa tggtgcccgt aactttcggt agagcggacg	480
	gccaatactc aacttcaagg aatctcaccc atgcgcgccg gcggggaacc ggagttccct	540 600
40	tcagtgaacg ttattagttc gccgctcggt gtgtcgtaga tactagcccc tggggccttt tgaaatttga ataagattta tgtaatcagt cttttaggtt tgaccggttc tgccgctttt	660
	tttaaaattg gatttgtaat aataaaacgc aattgtttgt tattgtggcg ctctatcata	720
	gatgtogota taaacotatt cagcacaata tattgtttto attttaatat tgtacatata	780
	agtagtaggg tacaatcagt aaattgaacg gagaatatta ttcataaaaa tacgatagta	840
	acgggtgata tattcattag aatgaaccga aaccggcggt aaggatctga gctacacatg	900
45	ctcaggtttt ttacaacgtg cacaacagaa ttgaaagcaa atatcatgcg atcataggcg	960
	tetegeatat eteattaaag caggaeteta gagacaaaaa ggeaatggat eettteaaaa	1020 1080
	ggcgaagaac cagaattgtt gcaattgatg cattatgtac accgaagatg agacacttta aagatatatg tottttaagg gaaattaata aggcactatg tggottttta aattgtagca	1140
	aggettggga geaceatega tttegaacee agetteeeaa etgtaateaa teeaaatgta	1200
	agatcaatga taacacaatg acatgatcta tcatgttacc ttgtttattc atgttcgact	1260
50	aattcattta attaatagtc aatccattta gaagttaata aaactacaag tattatttag	1320
	aaattaataa gaatgttgat tgaaaataat actatataaa atgatagatc ttgcgctttg	1380
	ttatattagc attagattat gttttgttac attagattac tgtttctatt agtttgatat	1440

	tatttgttac tt	tagettgt	tatttaatat	tttgtttatt	gataaattac	aagcagattg	1500
	gaatttetaa ca	aaat <u>a</u> ttt	attaactttt	aaactaaaat	atttagtaat	ggtatagata	1560
	tttaattata ta	ataaacta	ttaatcataa	aaaaatatta	ttttaattta	tttattctta	1620
	tttttactat ag	gtattttat	cattgatatt	taattcatca	aaccagctag	aattactatt	1680
5	atgattaaaa ca						1740
	aaataatata ct						1800
	ttttacatta ct						1860
	taacaactat at						1920
	gaaaaaagaa aa						1980
10	acaatttaaa aa						2040
10	gtgtctcatc tt						2100
	gaaaggatcc at		-	_		-	2160
	tatatagagg aa						2220
	gagatgtcac at						2280
	atgetcetcg to						2340
15	atageettte et						.2400
	ctttcgatga ag						2460
							2400
	ctttgttgaa aa gagtagacca ga						
	cgtaaaagac to						2580
							2640
20	atttgaatct ta						2700
	tccaatctct at						2760
	agtacttctg at						2820
	tettttgact ge						2880
	cgggtagatc gt						2940
	attettetg aa						.3000
25	accttcacct to						3060
	ctccggggca aa						3120
	cgtgagccag tg						3180
	cttgagttga go				-		3240
	gtacgcgtca go						3300
30	gggaacgccg tt						3360
00	accgttatac ac						3420
	aggagcaact gt						3480
	ccgctcgacg ag						3540
	ctcggtaccc aa						3600
	ttcgactcta ga						3660
35	tctcgaactc gg						3720
	gtagatgtta at						3780
	agtcaggtat ta						3840
	atatttcaat aa						3900
	tattatgtgt aa						3960
	cgcgtgagat ca						4020
40	gtccagctgc ca						4080
	catgccgcgg gg						4140
	cccgatgaca gc						4200
	gtagagcgtg ga						4260
	ggccgtccag tc						4320
45	ctcgccgtcc ac						4380
40	cgtccactcc tg						4440
	gtggttgacg at						4500
	cgggcgtcgt tc						4560
	gtgctttggt ca						4620
	agggtctagg at	acatgaga	ttcaagtgga	ctaggatcta	caccgttgga	ttttgagtgt	4680
50	ggatatgtgt ga						4740
	agacccttat cg						4800
	tatcgttatc ta						4860
	ctggtggact tg						4920
	tacctttttt tt	accttgga	tttagttaat	atataatggt	atgattcatg	aataaaaatg	4980
	ggaaattttt ga						5040
55	tttttttcat tt						5100

							53.60
	taacattcaa	ataaaaatga	aaataagaac	tttcaaaaaa	cagaactatg	tttaatgtgt	5160
	aaagattagt	cgcaca <u>t</u> caa	gtcatctgtt	acaatatgtt	acaacaagtc	ataagcccaa	5220
	caaagttagc	acgtctaaat	aaactaaaga	gtccacgaaa	atattacaaa	tcataagccc	5280
F	aacaaagtta	ttgatcaaaa	aaaaaaacg	cccaacaaag	ctaaacaaag	tccaaaaaaa	5340
5	acttctcaag	tctccatctt	cctttatgaa	cattgaaaac	tatacacaaa	acaagtcaga	5400
	taaatctctt	tctgggcctg	tcttcccaac	ctcctacatc	acttccctat	cggattgaat	5460
	gttttacttg	taccttttcc	gttgcaatga	tattgatagt	atgtttgtga	aaactaatag	5520
	ggttaacaat	cqaaqtcatg	gaatatggat	ttggtccaag	attttccgag	agctttctag	5580
	tagaaagccc	atcaccagaa	atttactagt	aaaataaatc	accaattagg	tttcttatta	5640
10	totoccaaat	tcaatataat	tatagaggat	atttcaaatg	aaaacgtatg	aatgttatta	5700
	gtaaatggto	aggtaagaga	ttaaaaaaat	cctacgtcag	atattcaact	ttaaaaattc	5760
	gatcagtgtg	gaattgtaca	aaaatttggg	atctactata	tatatataat	gctttacaac	5820
	acttogattt	ttttttggag	gctggaattt	ttaatctaca	tatttgtttt	ggccatgcac	5880
	caactcattq	tttagtgtaa	tactttgatt	ttotcaaata	tatgtgttcg	tgtatatttg	5940
	tataaraatt	tetttaacea	tatacacaca	cacatatata	tatatata	tatattatat	6000
15	atcatgcact	tttaattgaa	aaaataatat	atatatatat	agtgcatttt	ttctaacaac	6060
	accatgeact	graattaatr	tgcaaaaata	ctoctagagt	aatgaaaaat	ataatctatt	6120
	catacatyce	totoactot	taagattttc	ttaaadtaaa	ttettteaaa	ttttagctaa	6180
	gergaaarta	ataadtaaad	aataatacac	aatctcgacc	acqqaaaaaaa	aacacataat	6240
	aagictigia	the	gtacccggaa	ttagattata	attacctcag	atcaaggaat	6300
	taattugaat	cctacctast	aacttcgtat	aggatagatt	atacqaaqtt	atatogatet	6360
20	caalleggla	cgcacctaat	gcactcgcga	ageacacact	traagcatag	agccatttac	6420
	cgaggcatta	cygcallacy	gcattegega	ttagaaaaaa	tagagettag	atattaattt	6480
	aattgaatat	atcetgeege	cgctgccgct	atttacatta	agaactgac	catatacacc	6540
	ctacgcagaa	ctgageeggt	taggcagata	according	agaactgage	ttttaaacat	6600
	ttccccccaa	cacggrgage	gacggggcaa	cggagtgate	cacatgygac	arcacecca	6660
25	catecgtegg	atggcgttgc	gagagaagca	gregareegt	gagateagee	gacgcaccgg	6720
25	gcaggcgcgc	aacacgatcg	caaagtattt	gaacgcaggt	acaategage	taatgeeget	6780
	ggtaccggaa	cgaccaagca	agctagctta	graaageeet	cgetagattt	categoggat	6840
	gttgcgatta	cttcgccaac	tattgcgata	acaagaaaaa	gecageettt	calgalalat	6900
	ctcccaattt	gtgtagggct	tattatgcac	gettaaaaat	aataaaagca	gaettyaeet	6960
	gatagtttgg	ctgtgagcaa	ttatgtgctt	agegeateta	acgettgagt	caageegege	7020
30	cgcgaagcgg	cgtcggcttg	aacgaattgt	cagacattat	regeogacia	eeliggigat	7080
	ctcgcctttc	acgtagtgga	caaattcttc	caactgatct	gcgcgcgagg	ccaagegate	7140
	ttcttcttgt	ccaagataag	cctgtctagc	ttcaagtatg	acgggctgat	actgggeegg	7200
	caggegetee	attgcccagt	cggcagcgac	atcettegge	gegatttge	eggetaetge	7260
	gctgtaccaa	atgcgggaca	acgtaagcac	tacatttcgc	tcatcgccag	cccagteggg	7320
	cggcgagttc	catagcgtta	aggtttcatt	tagegeetea	aatagateet	gttcaggaac	7380
35	cggatcaaag	agttcctccg	ccgctggacc	taccaaggca	acgetatgtt	ctcllgclll	
	tgtcagcaag	atagccagat	caatgtcgat	cgrggcrggc	tcgaagatac	Ctgcaagaat	7440
	gtcattgcgc	tgccattctc	caaattgcag	ttcgcgctta	getggataac	gccacggaac	7500 7560
	gatgtcgtcg	tgcacaacaa	tggtgacttc	tacagegegg	agaatetege	tetetecagy	
	ggaagccgaa	gtttccaaaa	ggtcgttgat	caaagetege	cgcgttgttt	catcaageet	7620
40	tacggtcacc	gtaaccagca	aatcaatatc	actgtgtggc	ttcaggccgc	catecaetge	7680
40	ggagccgtac	aaatgtacgg	ccagcaacgt	cggttcgaga	tggcgctcga	tgacgccaac	7740
	tacctctgat	agttgagtcg	atacttcggc	gatcaccgct	teceteatga	tgtttaactt	7800
	tgttttaggg	cgactgccct	gctgcgtaac	atcgttgctg	ctccataaca	ccaaacatcg	7860
	acccacggcg	taacgcgctt	gctgcttgga	tgcccgaggc	atagactgta	ccccaaaaaa	7920
	acagtcataa	caagccatga	aaaccgccac	tgcgccgtta	ccaccgctgc	gttcggtcaa	7980
45	ggttctggac	cagttgcgtg	agcgcatacg	ctacttgcat	tacagettae	gaaccgaaca	8040
	ggcttatgtc	cactgggttc	gtgccttcat	ccgtttccac	ggtgtgcgtc	acccggcaac	8100
	cttgggcagc	agcgaagtcg	aggcatttct	gtcctggctg	gcgaacgagc	gcaaggtttc	8160
	ggtctccacg	catcgtcagg	cattggcggc	cttgctgttc	ttctacggca	agtgctgtgc	8220
	acggatctgc	cctggcttca	ggagatcgga	agacctcggc	cgtccgggcg	cttgccggtg	8280
	gtgctgaccc	cggatgaagt	ctctagagct	ctagagggtt	cgcatcctcg	gttttctgga	8340
50	aggcgagcat	cgtttgttcg	cccagettet	gtatggaacg	ggcatgcgga	tcagtgaggg	8400
	tttgcaactg	cgggtcaagq	atctggattt	cgatcacggc	acgatcatcg	tgcgggaggg	8460
	caagggctcc	aaggatcggg	ccttgatgtt	acccgagagc	ttggcaccca	gcctgcgcga	8520
	gcagggatcg	atccaacccc	tccgctgcta	tagtgcagtc	ggcttctgac	gttcagtgca	8580
	gccgtcttct	qaaaacqaca	tgtcgcacaa	gtcctaagtt	acgcgacagg	ctgccgccct	8640
	gecetttee	tggcgttttc	ttgtcacata	ttttagtcgc	ataaagtaga	atacttgcga	8700
55	ctagaaccog	agacattaco	ccatgaacaa	gagcgccgcc	gctggcctgc	tgggctatgc	8760
		5				—	

	ccgcgtcagc a	accgacgacc	aggacttgac	caaccaacgg	gccgaactgc	acgcggccgg	8820
	ctgcaccaag d	ctattttccg	agaagatcac	cggcaccagg	cgcgaccgcc	cggagctggc	8880
	caggatgett	accacctac	gccctggcga	cgttgtgaca	gtgaccaggc	tagaccgcct	8940
	ggcccgcagc a	acccqcqacc	tactggacat	tgccgagcgc	atccaggagg	ccggcgcggg	9000
5	cctgcgtage d	ctaacaaaac	cgtgggccga	caccaccacg	ccggccggcc	gcatggtgtt	9060
	gaccgtgttc g	accaacatta	ccgagttcga	gcgttcccta	atcatcgacc	gcacccggag	9120
	cgggcgcgag g	accaccaaaa	cccqaqqcqt	gaagtttggc	ccccgcccta	ccctcacccc	9180
	ggcacagate	acacacaccc	gcgagctgat	cgaccaggaa	qqccgcaccg	tgaaagaggc	9240
	ggctgcactg	cttaacatac	atcactcaac	cctqtaccqc	gcacttgagc	gcagcgagga	9300
10	agtgacgccc	accgaggegege	aacaacacaa	tqccttccqt	gaggacgcat	tgaccgaggc	9360
10	cgacgccctg	acaaccacca	agaatgaacg	ccaaqaqqaa	caagcatgaa	accgcaccag	9420
	gacggccagg		tttcattacc	gaagagatcg	aggeggagat	gategeggee	9480
	gggtacgtgt		cacacacate	tcaaccgtgc	ggctgcatga	aatcctggcc	9540
	ggtttgtctg	atoccaaoct	agcaacctaa	ccggccagct	tggccgctga	agaaaccgag	9600
	cgccgccgtc	taaaaaggtg	atototattt	gagtaaaaca	gettgegtea	tgcggtcgct	9660
15	gcgtatatga	tocoatoaot	aaataaacaa	atacgcaagg	ggaacgcatg	aaggttatcg	9720
	ctgtacttaa	ccagaaaggc	gggtcaggca	agacgaccat	cgcaacccat	ctagcccgcg	9780
	ccctgcaact	caccaaaacc	aatattctat	tagtcgattc	cgatccccag	ggcagtgccc	9840
	gcgattgggc	aaccatacaa	gaagatcaac	cqctaaccgt	tgtcggcatc	gaccgcccga	9900
	cgattgaccg	cgacgtgaag	gccatcggcc	ggcgcgactt	cgtagtgatc	gacggagcgc	9960
	cccaggcggc	gaacttggct	qtqtccqcqa	tcaaggcagc	cgacttcgtg	ctgattccgg	10020
20	tgcagccaag	cccttacgac	atatogocca	ccgccgacct	ggtggagctg	gttaagcagc	10080
	gcattgaggt	cacqqatqqa	aggetacaag	cggcctttgt	cgtgtcgcgg	gcgatcaaag	10140
	gcacgcgcat	caacaataaa	gttgccgagg	cgctggccgg	gtacgagctg	cccattcttg	10200
	agtcccgtat	cacqcaqcqC	gtgagctacc	caggcactgc	cgccgccggc	acaaccgttc	10260
	ttgaatcaga	accegagge	gacgetgece	gcgaggtcca	ggcgctggcc	gctgaaatta	10320
25	aatcaaaact	catttqaqtt	aatgaggtaa	agagaaaatg	agcaaaagca	caaacacgct	10380
20	aagtgccggc	catccgagcg	cacgcagcag	caaggetgea	acgttggcca	gcctggcaga	10440
	cacgccagcc	atgaagcggg	tcaactttca	gttgccggcg	gaggatcaca	ccaagctgaa	10500
	gatgtacgcg	gtacgccaag	gcaagaccat	taccgagetg	ctatetgaat	acatcgcgca	10560
	gctaccagag	taaatgagca	aatgaataaa	tgagtagatg	aattttagcg	gctaaaggag	10620
	gcggcatgga	aaatcaagaa	caaccaggca	ccgacgccgt	ggaatgcccc	atgtgtggag	10680
30	gaacgggcgg	ttggccaggc	gtaagegget	gggttgtctg	ccggccctgc	aatggcactg	10740
	gaacccccaa	gcccgaggaa	tcggcgtgac	ggtcgcaaac	catccggccc	ggtacaaatc	10800
	adcacaacac	tgggtgatga	cctggtggag	aagttgaagg	ccgcgcaggc	cgcccagcgg	10860
	caacqcatcg	aggcagaagc	acgccccggt	gaatcgtggc	aagcggccgc	tgatcgaatc	10920
	cqcaaagaat	cccggcaacc	gccggcagcc	ggtgcgccgt	cgattaggaa	gccgcccaag	10980
25	qqcqacqaqC	aaccagattt	tttcgttccg	atgctctatg	acgtgggcac	ccgcgatagt	11040
35	cqcaqcatca	tggacgtggc	cgttttccgt	ctgtcgaagc	gtgaccgacg	agetggegag	11100
	ataatccact	acqaqcttcc	agacgggcac	gtagaggttt	ccgcagggcc	ggccggcatg	11160
	accaatatat	qqqattacqa	-cctggtactg	atggcggttt	cccatctaac	cgaatccatg	11220-
	aaccgatacc	gggaagggaa	gggagacaag	cccggccgcg	tgttccgtcc	acacgttgcg	11280
	gacgtactca	agttctgccg	gcgagccgat	ggcggaaagc	agaaagacga	cctggtagaa	11340
40	acctgcattc	ggttaaacac	cacgcacgtt	gccatgcagc	gtacgaagaa	ggccaagaac	11400
	ggccgcctgg	tgacggtatc	cgagggtgaa	gccttgatta	gccgctacaa	gatcgtaaag	11460
	agcgaaaccg	ggcggccgga	gtacatcgag	atcgagctag	ctgattggat	gtaccgcgag	11520
	atcacagaag	gcaagaaccc	ggacgtgctg	acggttcacc	ccgattactt	tttgatcgat	11580
	cccggcatcg	gccgttttct	ctaccgcctg	gcacgccgcg	ccgcaggcaa	ggcagaagcc	11640
	agatggttgt	tcaagacgat	ctacgaacgc	agtggcagcg	ccggagagtt	caagaagttc	11700
45	tgtttcaccg	tgcgcaagct	gatcgggtca	aatgacctgc	cggagtacga	tttgaaggag	11760 11820
	gaggcggggc	aggctggccc	gatcctagtc	atgcgctacc	gcaacetgat	cgagggcgaa	
	gcatecgeeg	gttcctaatg	tacggagcag	atgetaggge	aaattgccct	agcaggggaa	11880
	aaaggtcgaa	aaggtetett	tcctgtggat	agcacgtaca	ttgggaaccc	aaagccgtac	11940
	attqqqaacc	ggaacccgta	cattgggaac	ccaaagccgt	acattgggaa	ccggtcacac	12000
50	atgtaagtga	ctgatataaa	agagaaaaaa	ggcgattttt	ccgcctaaaa	ctctttaaaa	12060
-	cttattaaaa	ctcttaaaac	ccgcctggcc	tgtgcataac	tgtctggcca	gcgcacagcc	12120
	gaagagetge	aaaaaqcqcc	tacccttcgg	tcgctgcgct	ccctacgccc	cgccgcttcg	12180
	catcaaccta	tcacqaccac	tggccgctca	aaaatggctg	gcctacggcc	aggcaatcta	12240
	ccaqqqcqcq	gacaagccgc	gccgtcgcca	ctcgaccgcc	ggcgcccaca	tcaaggcacc	12300
	ctacctcaca	catttcagtg	atgacggtga	. aaacctctga	cacatgcagc	teceggagae	12360
55	ggtcacagct	tgtctgtaag	cggatgccgg	gagcagacaa	gcccgtcagg	gcgcgtcagc	12420

	gggtgttggc	gggtgtcggg	gcgcagccat	gacccagtca	cgtagcgata	gcggagtgta	12480
		actatgcggc					12540
	gaaataccgc	acagatgcgt	aaggagaaaa	taccgcatca	ggcgctcttc	cgcttcctcg	12600
5	ctcactgact	cgctgcgctc	ggtcgttcgg	ctgcggcgag	cggtatcagc	tcactcaaag	12660
0	gcggtaatac	ggttatccac	agaatcaggg	gataacgcag	gaaagaacat	gtgagcaaaa	12720
	ggccagcaaa	aggccaggaa	ccgtaaaaag	gccgcgttgc	tggcgttttt	ccataggete	12780
	cgcccccctg	acgagcatca	caaaaatcga	cgctcaagtc	agaggtggcg	aaacccgaca	12840
	ggactataaa	gataccaggc	gtttccccct	ggaagctccc	tcgtgcgctc	tcctgttccg	12900
	accctgccgc	ttaccggata	cctgtccgcc	tttctccctt	cgggaagcgt	ggcgctttct	12960
10	catagctcac	gctgtaggta	tctcagttcg	gtgtaggtcg	ttcgctccaa	gctgggctgt	13020
	gtgcacgaac	cccccgttca	gcccgaccgc	tgcgccttat	ccggtaacta	tcgtcttgag	13080
	tccaacccgg	taagacacga	cttatcgcca	ctggcagcag	ccactggtaa	caggattagc	13140
	agagcgaggt	atgtaggcgg	tgctacagag	ttcttgaagt	ggtggcctaa	ctacggctac	13200
	actagaagga	cagtatttgg	tatctgcgct	ctgctgaagc	cagttacctt	cggaaaaaga	13260
15	gttggtagct	cttgatccgg	caaacaaacc	accgctggta	gcggtggttt	ttttgtttgc	13320
10	aagcagcaga	ttacgcgcag	aaaaaagga	tctcaagaag	atccggaaaa	cgcaagcgca	13380
	aagagaaagc	aggtagcttg	cagtgggctt	acatggcgat	agctagactg	ggcggtttta	13440
	tggacagcaa	gcgaaccgga	attgcc				13466

- 20 <210> 10 <211> 31 <212> PRT <213> Artificial Sequence
- 25 <220> <223> Consensus sequence 1 of PARG protein <220> <221> MISC_FEATURE <222> (2).. (2)
- 30 <223> X represents any amino acid

<220> <221> MISC_FEATURE <222> (8)..(10)

35 <223> X represents any amino acid

<220> <221> MISC_FEATURE <222> (14)..(17) <223> X represents any amino acid

- <220> <221> MISC FEATURE
- <222> (19)..(19)
 45 <223> X represents any amino acid

<220> <221> MISC FEATURE

- <222> (27)..(29)
- 50 <223> X represents any amino acid

<400> 10

55

		Leu 1	Xaa	Val	Asp	Phe 5	Ala	Asn	Xaa	Xaa	Xaa 10	Gly	Gly	Gly	Xaa	Xaa 15	Xa	a
5		Xaa	Gly	Xaa	Val 20	Gln	Glu	Glu	Ile	Arg 25	Phe	Xaa	Xaa	Xaa	Pro 30	Glu		
10	<210> 11 <211> 20 <212> PR <213> Arti		Seque	ence														
15	<220> <223> Cor <220> <221> MIS <222> (3). <223> X re	SC_FE .(3)	EATU	RE			RG pr	otein										
20	<220> <221> MIS <222> (10 <223> X re)(10))		nino a	acid												
25	<220> <221> MIS <222> (13 <223> X re)(14))		nino a	ncid												
30	<220> <221> MIS <222> (17 <223> X re)(19))		nino a	acid												
35	<400> 11																	
		Th 1	ır G]	ly Xa	ia Tr	тр G] 5	у Су	rs Gl	y Al	la Ph	ne Xa 10		ly Ae	sp Xa	ia Xa	a Le 19		Гуз
40		Xa	ia Xa	a Xa	ia Gl 20													
45	<210> 12 <211> 13 <212> PR <213> Arti		Seque	ence														
50	<220> <223> Cor <220> <221> MIS <222> (2).	SC_FE		-	ce 3 fo	or PA	RG pr	otein										
55	<223> X re <220> <221> MIS <222> (6).	eprese SC_FE		-	nino a	acid												

Asp Xaa Xaa Xaa Arg Xaa Xaa Xaa Xaa Ala Ile Asp Ala

.

<223>	Х	represents	any	amino	acid	
-------	---	------------	-----	-------	------	--

<400> 12

<210> 13 <211> 10 <212> PRT <213> Artificial Sequence	
<220> <223> Consensus sequence 4 for PARG protein <220> <221> MISC_FEATURE <222> (3)(4) <223> X represents any amino acid	
<220> <221> MISC_FEATURE <222> (7)(8) <223> X represents any amino acid	
<400> 13	
Arg Glu Xaa Xaa Lys Ala Xaa Xaa Gly Phe 1 5 10	
<210> 14 <211> 11 <212> PRT <213> Artificial Sequence	
<220> <223> conserved PARG region <220> <221> MISC_FEATURE <222> (2)(5) <223> X represents any amino acid	
<220> <221> MISC_FEATURE <222> (7)(7) <223> X represents any amino acid	
<400> 14	
Gly Xaa Xaa Xaa Xaa Ser Xaa Tyr Thr Gly Tyr 1 5 10	

- 55 <210> 15 <211> 1530
 - <212> DNA
 - <213> Oryza sativa

<220> <221> CDS <222> (1)..(1530) <223>

5

<400> 15

10	atg Met 1	gag Glu	gcg Ala	cgc Arg	ggc Gly 5	gac Asp	ctg Leu	cgc Arg	tcg Ser	atc Ile 10	ctg Leu	ccc Pro	tac Tyr	ctc Leu	ccc Pro 15	gtc Val	48
	gtg Val										ccg Pro						96
15											agc Ser						144
											cgc Arg						192
20	gac Asp 65	cca Pro	ctc Leu	ccg Pro	cgc Arg	cgc Arg 70	gcc Ala	gcc Ala	gag Glu	ggc Gly	ttc Phe 75	gcg Ala	ctc Leu	ttc Phe	ttc Phe	gac Asp 80	240
											tgg Trp						288

.

25

30

35

45

50

					85					90					95			
	ccc t Pro S																	336
5	cac t	tac	cgc		gcc	ggc	gac	gag		cgc	ggg	ctc	cqc		ctg	agc		384
	His 7	Tyr	Arg 115	Ala	Ala	Gly	Asp	Glu 120	Ala	Arg	Ğly	Leu	Arg 125	Ile	Leu	Ser		
	tcg o																	432
10	Ser (130	нар	AIA	GTÀ	Deu	135	цец	Leu	Ser	GTII	140	neu	AIA	AId	Ala		
10	ctg d																	480
	Leu I 145			-		150		-			155			-	•	160		500
	gag g Glu <i>A</i>																	528
15			_		165					170					175			
	tgt t Cys 7																	576
		-		180	-				185					190				
20	cac t His 7																	624
	ttt g	gag		aag	gtt	ctt	cct		cgt	cct	gaa	tct	gat	ggc	att	acg		672
		210	-	-			215	_	_			220	_	-				
25	tac d Tyr H																	720
	225					230					235					240		
	ttc d Phe <i>P</i>																	768
		-			245		_			250	-		•		255			
30	ctt g Leu (Asp					Tyr					Ala				816
	aga g	aac	tac	260 ata	caq	σaa	aaa	atc	265 caa	ttc	atα	ata	aac	270 cca	gaa	tta		864
	Arg (Jly	Cys 275	Val	Gln	Glu	Ğlu	Ile 280	Arg	Phe	Met	Ile	Asn 285	Pro	Ğlu	Leu		•••
35	atc g Ile N																1	912
	2	290	_				295					300						
	gaa a Glu J																. :	960
	305			_		310	_				315		_	-	_	320		
40	tca t Ser H		-				-			_	-				-		10	008.
	DOLL		mg	2.110	325	Gry	пор	TÄT	Deu	330	DCL	цур	FIO	FIIC	335	ATG		
	atg g	_	-							-		-	-	-	-	-	10	056
	Met G	этү	Arg	Arg 340	гЛа	Thr	Arg	11e	vai 345	AIa	тте	Asp	Ala	Leu 350	Asp	Cys		
45	cca a																1	104
	Pro I		Arg 355	Leu	Gln	Phe	Glu	Ser 360	Ser	Gly	Leu	Leu	Arg 365	Glu	Val	Asn		
	aag g																1:	152
50	Lys A 3	41a 370	чњ	Cys	σтλ	Pne	Leu 375	Asp	GTU	ser	Asn	H15 380	GTU	ьeu	Cys	ата		
	aag c						aat					tgt					12	200
	Lys I 385	Leu	Val	Gln	Asp	Leu 390	Asn	Thr	Lys	Asp	Asn 395	Сув	Pro	Ser	Val	Ile 400	·	
	cct g					gga					aac					gct	12	248
55	Pro A	∕sp	Glu	Сув	Ile 405	Gly	Val	Ser	Thr	Gly 410	Asn	Trp	Gly	Суз	Gly 415	Ala		
					-200					-ETO					440			

						-		_		atg Met					-	-	1296
5										tac Tyr						gaa Glu	1344
		-		-		-				cag Gln			-	-			1392
10		•	- ·	~~		-		-	-	ctt Leu						-	1440
15			-		-	Thr				ttt Phe 490							1488
	-	-	Ile				-		-	tac Tyr	-	•		tag			1530

- 20 <210> 16 <211> 509 <212> PRT <213> Oryza sativa
- 25 <400> 16

30

35

45

50

55

•

	Met Glu Al 1	a Arg Gly 5	Asp Leu	Arg Ser	Ile Leu 10	Pro Tyr	Leu Pro 15	Val
5	Val Leu Ar	g Gly Gly 20	Ala Leu	Phe Trp 25	Pro Pro	Ala Ala	Gln Glu 30	Ala
	Leu Lys Al 35	a Leu Ala	Leu Gly	Pro Asp 40	Val Ser	Arg Val 45	Ser Ser	Gly
10	Asp Val Lev 50	ı Ala Asp	Ala Leu 55	Thr Asp	Leu Arg	Leu Ala 60	Leu Asn	Leu
	Asp Pro Le 65	ı Pro Arg	Arg Ala 70	Ala Glu	Gly Phe 75	Ala Leu	Phe Phe	Asp 80
15	Asp Leu Le	ı Ser Arg 85	Ala Gln	Ala Arg	Asp-Trp 90	Phe Asp	His Val 95	Ala
	Pro Ser Le	1 Ala Arg 100	Leu Leu	Leu Arg 105	Leu Pro	Thr Leu	Leu Glu 110	Gly
20	His Tyr Arg 11	-	Gly Asp	Glu Ala 120	Arg Gly	Leu Arg 125	Ile Leu	Ser
	Ser Gln Asj 130	o Ala Gly	Leu Val 135	Leu Leu	Ser Gln	Glu Leu 140	Ala Ala	Ala
25	Leu Leu Ala 145	a Cys Ala	Leu Phe 150	Cys Leu	Phe Pro 155	Thr Ala	Asp Arg	Ala 160
20	Glu Ala Cys	s Leu Pro 165	Ala Ile	Asn Phe	Asp Ser 170	Leu Phe	Ala Ala 175	Leu
30	Cys Tyr Ası	1 Ser Arg 180	Gln Ser	Gln Glu 185	Gln Lys	Val Arg	Cys Leu 190	Val

	His	Tyr	Phe 195	Asp	Arg	Val	Thr	Ala 200	Ser	Thr	Pro	Thr	Gly 205	Ser	Val	Ser
5	Phe	Glu 210	Arg	гув	Val	Leu	Pro 215	Arg	Arg	Pro	Glu	Ser 220	Asp	Gly	Ile	Thr
	Tyr 225	Pro	Asp	Met	Asp	Thr 230	Trp	Met	rya	Ser	Gly 235	Val	Pro	Leu	Суз	Thr 240
10	Phe	Arg	Val	Phe	Ser 245	Ser	Gly	Leu	Ile	Glu 250	Asp	Glu	Glu	Gln	Glu 255	Ala
15	Leu	Glu	Val	Asp 260	Phe	Ala	Asn	Arg	Tyr 265	Leu	Gly	Gly	Gly	Ala 270	Leu	Ser
15	Arg	Gly	Суз 275	Val	Gln	Glu	Glu	Ile 280	Arg	Phe	Met	Ile	Asn 285	Pro	Glu	Leu
20	Ile	Val 290	Gly	Met	Leu	Phe	Met 295	Val	Ser	Met	Glu	Asp 300	Asn	Glu	Ala	Ile
	Glu 305	Ile	Val	Gly	Ala	Glu 310	Arg	Phe	Ser	Gln	Tyr 315	Met	Gly	Tyr	Gly	Ser 320
25	Ser	Phe	Arg	Phe	Thr 325	Gly	Азр	Tyr	Leu	Asp 330	Ser	Lys	Pro	Phe	Asp 335	Ala
	Met	Gly	Arg	Arg 340	Lya	Thr	Arg	Ile	Val 345	Ala	Ile	Asp	Ala	Leu 350	Asp	Cys
30	Pro	Thr	Arg 355	Leu	Gln	Phe	Glu	Ser 360	Ser	Gly	Leu	Leu	Arg 365	Glu	Val	Asn
	Lys	Ala 370	Phe	Суз	Gly	Phe	Leu 375	Asp	Gln	Ser	Asn	His 380	Gln	Leu	Cys	Ala
35	Lys 385	Leu	Val	Gln	Asp	Leu 390	Asn	Thr	Lys	Asp	Asn 395	Суз	Pro	Ser	Val	Ile 400
	Pro	Asp	Glu	Суз	Ile 405	Gly	Val	Ser	Thr	Gly 410	Asn	Trp	Gly	Суз	Gly 415	Ala
40	Phe	Gly	Gly	Asn 420	Pro	Glu	Ile	Lys	Ser 425	Met	Ile	Gln	Trp	Ile 430	Ala	Ala
	Ser	Gln	Ala 435	Leu	Arg	Ser	Phe	Ile 440	Asn	Tyr	Tyr	Thr	Phe 445	Glu	Ser	Glu
45	Ser	Leu 450	Lys	Arg	Leu	Glu	Glu 455	Val	Thr	Gln	Trp	Ile 460	Leu	Arg	His	Arg
	Trp 465	Thr	Val	Gly	Glu	Leu 470	Trp	Asp	Met	Leu	Val 475	Glu	Tyr	Ser	Ser	Gln 480
50	Arg	Leu	Arg	Gly	Asp 485	Thr	Asn	Glu	Gly	Phe 490	Leu	Thr	Trp	Leu	Leu 495	Pro
	-	Asp	Ile	Pro 500	Asn	Gly	Asp	Val	Asp 505	-	Met	Cys	Glu			
55																

55

<210> 17 <211> 25

	<212> DNA <213> Artificial Sequence
5	<220> <223> degenerate oligonucleotide primer PG1 <400> 17 atgtbccaca rmtckccrac mgtcc 25
10	<210> 18 <211> 28 <212> DNA <213> Artificial Sequence
15	<220> <223> degenerate oligonucleotide primer PG2 <400> 18 gggtytccwc caaaarcmcc rcawcccc 28
20	<210> 19 <211> 26 <212> DNA <213> Artificial Sequence
25	<220> <223> degenerate oligonucleotide primer PG3 <400> 19 gctatagaaa twgtyggtgy rgaaag 26
30	<210> 20 <211> 26 <212> DNA <213> Artificial Sequence
35	<220> <223> degenerate oligonucleotide primer PG4 <400> 20 agrggstgyg trcaggarga ratmcg 26
40	<210> 21 <211> 23 <212> DNA <213> Artificial Sequence
45	<220> <223> degenerate oligonucleotide primer PG5 <220> <221> misc_feature
50	<222> (18)(18) <223> n=any nucleotide <400> 21 atggargaya aygargcnat hga 23
55	<210> 22 <211> 24 <212> DNA <213> Artificial Sequence

<220> <223> degenerate oligonucleotide primer PG6 <400> 22 ccaytgdagc atrctyttda gytc 5 24 <210> 23 <211> 603 <212> DNA 10 <213> zea mays <400> 23 tagggctgtg tgcaggagga aatccgcttc atgataaacc ccgaattgat tgtgggtatg 60 15 ctattcttgt cttgtatgga agataacgag gctatagaaa tctttggtgc agaacggttc 120 tcacagtata tgggttatgg ttcctccttt cgctttgttg gtgactattt agataccaaa 180 ccctttgatt cgatgggcag acggagaact aggattgtgg ctatcgatgc tttggactgt 240 ccagctaggt tacactatga atctggctgt ctcctaaggg aagtgaacaa ggcattttgt 300 ggatttttcg atcaatcgaa acaccatctc tatgcgaage ttttccagga tttgcacaac 360 aaggatgact tttcaagcat caattccagt gagtacgtag gagtttcaac aggaaactgg 420 20 ggttgtggtg cttttggtgg aaaccctgaa atcaagagca tgattcagtg gattgctgca 480 tcacaggete ttegecettt tgttaattae tacaettttg agaacgtgte tetgeaaaga 540 600 ttagaggagg tgatccagtg gatacggett catggetgga ctgteggega getgtggaac 603 ata 25 <210> 24 <211> 12987 <212> DNA <213> Artificial sequence 30 <220> <223> T-DNA vector comprising a chimeric ParG expression reducing gene <220> <221> misc feature 35 <222> (1)..(25) <223> complement of Left T-DNA border <220> <221> misc_feature 40 <222> (58)..(318) <223> complement of 3' nos <220> <221> misc_feature <222> (337)..(888) 45 <223> bar coding region <220> <221> misc_feature 50 <222> (889)..(1721) <223> 35S promoter <220> <221> misc_feature <222> (1728)..(3123) 55 <223> 35S promoter

<220>

<221> misc_feature <222> (3133)..(3311) <223> part of ParG homologue of Zea mays

- <220> <221> misc_feature <222> (3344)..(4085) <223> Pdk intron
- 10
 <220>

 <221> misc_feature

 <222> (4119)..(4297)

 <223> part of ParG homologue of Zea mays (inverted)
 - <220> <221> misc_feature <222> (4310)..(5020) <223> 3' OCS
- 20 <220> <221> misc_feature <222> (5066)..(5042) <223> Right T-DNA border
- 25 <400>24

30

5

- 35
- 40
- 45
- 50
- 55

cggcaggata	tattcaattg	taaatggctc	catggcgatc	gctctagagg	atcttcccga
tctagtaaca	tagatgacac	cgcgcgcgat	aatttatcct	agtttgcgcg	ctatatttg
ttttctatcg	cgtattaaat	gtataattgc	gggactctaa	tcataaaaac	ccatctcata
aataacgtca	tgcattacat	gttaattatt	acatgettaa	cgtaattcaa	cagaaattat
atgataatca	tcgcaagacc	ggcaacagga	ttcaatctta	agaaacttta	ttgccaaatg
tttgaacgat	ctgcttcgga	tcctagacgc	gtgagatcag	atctcggtga	cgggcaggac
				aaacccacgt	
cccgtgcttg	aagccggccg	cccgcagcat	gccgcggggg	gcatatccga	gcgcctcgtg
catgcgcacg	ctcgggtcgt	tgggcagccc	gatgacagcg	accacgctct	tgaagccctg
				cccagtcccg	
					gtgccttcca
				tcggcgacga	
				ggtteetgeg	
				gtgcagaccg	
cgcctcggtg	gcacggcgga	tgtcggccgg	gcgtcgttct	gggtccatgg	ttatagagag
				tcctctccaa	
cttccttata	tagaggaagg	gtcttgcgaa	ggatagtggg	attgtgcgtc	atcccttacg
tcagtggaga	tgtcacatca	atccacttgc	tttgaagacg	tggttggaac	gtcttcttt
			-	cactgtcggc	-
tgaatgatag	cctttccttt	atcgcaatga	tggcatttgt	aggagccacc	ttccttttct

	cggcaggata	tattcaattg	taaatggctc	catggcgatc	gctctagagg	atcttcccga	60
				aatttatcct			120
	ttttctatcg	cgtattaaat	gtataattgc	gggactctaa	tcataaaaac	ccatctcata	180
				acatgettaa			240
5	atgataatca	tcgcaagacc	ggcaacagga	ttcaatctta	agaaacttta	ttgccaaatg	300
				gtgagatcag			360
	cggacggggc	ggtaccggca	ggctgaagtc	cagctgccag	aaacccacgt	catgccagtt	420
	cccgtgcttg	aagccggccg	cccgcagcat	gccgcggggg	gcatatccga	gcgcctcgtg	480
				gatgacagcg			540
10				gagcgtggag			600
10						gtgccttcca	
				gccgtccacc			720
				ccactcctgc			780
				gttgacgatg			840
				gcgtcgttct			900
15				tttcagcgtg			960
				ggatagtggg			1020
				tttgaagacg			1080
				tctttgggac			1140
				tggcatttgt			1200
				gggcaatgga			1260
20				ctttggtett			1320
				accatgttga			1380
				tcgccagtct			1440
				ggccttagat			1500
				tttatgaagc			1560
25				gtetttetet			1620.
20				cttgggaagg			1680
				tgctgcgtag			1740
				cggccgctcg			1800
				cctctcagag			1860
				ggtccacatg			1920
30				cccggagttg	-		1980
				tacacaacaa			2040
				aagcccaaga			2100
				acgctaggaa			2160
				gagattacaa			2220
25				ggtgacgaca			2280
35				aatgctgacc			2340
	tacgcagcag	gtctcatcaa	gacgatctac	ccgagtaaca	atctccagga	gatcaaatac	2400
				agattcagga			2460
				actattccag			2520
	cttcataaac	caaggcaagt	aatagagatt	ggagtctcta	aaaaggtagt	tcctactgaa	2580
10							

	tctaaggcca	tgcatggagt	ctaagattca	aatcgaggat	ctaacagaac	tcgccgtgaa	2640
	gactggcgaa	cagttcatac	agagtettt	acgactcaat	gacaagaaga	aaatcttcgt	2700
	caacatggtg	gagcacgaca	ctctggtcta	ctccaaaaat	gtcaaagata	cagtctcaga	2760
-	agaccaaagg	gctattgaga	cttttcaaca	aaggataatt	tcgggaaacc	teeteggatt	2820
5	ccattgccca	gctatctgtc	acttcatcga	aaggacagta	gaaaaggaag	gtggctccta	2880
	caaatgccat	cattgcgata	aaggaaaggc	tatcattcaa	gatctctctg	ccgacagtgg	2940
	tcccaaagat	ggacccccac	ccacgaggag	catcgtggaa	aaagaagacg	ttccaaccac	3000
			gatgtgacat				3060
			cttcctctat				3120
10			tgtgggtatg				3180
10			agaacggttc				3240
			agataccaaa				3300
			gcttggtaag				3360
			taattagtat				3420
			attgtttaca				3480
15			gaagataaaa				3540
			gatatactag				3600
			taaatatcaa				3660
			ttttatgatt				3720
			ttaaaagtta				3780
			aaatattaaa				3840
20			atgtaacaaa				3900
			gtattattt				3960
			tctaaatgga				4020
			gatagatcat				4080
			ctgggttcga				4140
25							4200
25			ttggtatcta				4260
			aaccgttctg				4200
			atacccacaa				
			atcgcatgat				4380
,			gctcagatcc				4440
30			tattttatg				4500
			caatattaaa				4560
			agcgccacaa				4620
			cagaaccggt				4680
			cagggggctag				4740
			ccggttcccc				4800
35			ctaccgaaag	-			4860
			gctgccccga				4920
			tcaaaccttg				4980
			tgtcgagget				5040
			gtaatttgtc				5100
10			gcagcccatt				5160
40			gaagccatct				5220
			ccacgggacc				5280
			atcaatacca	-			5340
			gttccatagg				5400
			acaacctatt				5460
45			gacgactgaa				5520
40	tctttccaga	cttgttcaac	aggccagcca	ttacgctcgt	catcaaaatc	actcgcatca	5580
			tgattgcgcc				5640
			cgaatgcaac				5700
	atattttcac	ctgaatcagg	atattcttct	aatacctgga	atgctgtttt	tccggggatc	5760
	gcagtggtga	gtaaccatgc	atcatcagga	gtacggataa	aatgettgat	ggtcggaaga	5820
50	ggcataaatt	ccgtcagcca	gtttagtctg	accatctcat	ctgtaacatc	attggcaacg	5880
	ctacctttgc	catgtttcag	aaacaactct	ggcgcatcgg	gcttcccata	caatcgatag	5940
			gacattatcc				6000
			ctatcgccat				6060
			atcttcttga				6120
			gctaccageg				6180
55			tggcttcagc				6240
				5 5 5 5 5 5 5 5			-

	gtgtagccgt	agttaggcca	ccacttcaag	aactctgtag	caccgcctac	atacctcgct	6300
	ctgctaatcc	tgttaccagt	ggctgctgcc	agtggcgata	agtcgtgtct	taccgggttg	6360
	gactcaagac	gatagttacc	ggataaggcg	cageggtegg	gctgaacggg	gggttcgtgc	6420
	acacageeca	gcttggagcg	aacgacctac	accgaactga	gatacctaca	gcgtgagcta	6480
5	tgagaaagcg	ccacgettee	cgaagggaga	aaggcggaca	ggtatccggt	aagcggcagg	6540
			gagggagctt				6600
	cctgtcgggt	ttcgccacct	ctgacttgag	cgtcgatttt	tgtgatgete	gtcagggggg	6660
	cggagcctat	ggaaaaacgc	cagcaacgcg	gcctttttac	ggttcctggc	cttttgctgg	6720
			tcctgcgtta				6780
10	gcctttgagt	gagctgatac	cgctcgccgc	agccgaacga	ccgagcgcag	cgagtcagtg	6840
	agcgaggaag	cggaagagcg	cctgatgcgg	tattttctcc	ttacgcatct	gtgcggtatt	6900
	tcacaccgca	tatggtgcac	teteagtaca	atctgctctg	atgccgcata	gttaagccag	6960
	tatacactcc	gctatcgcta	cgtgactggg	tcatggctgc	gccccgacac	ccgccaacac	7020
	ccgctgacgc	gccctgacgg	gcttgtctgc	tcccggcatc	cgcttacaga	caagctgtga	7080
	ccgtctccgg	gagetgeatg	tgtcagaggt	tttcaccgtc	atcaccgaaa	cgcgcgaggc	7140
15	agggtgcctt	gatgtgggcg	ccggcggtcg	agtggcgacg	gcgcggcttg	tccgcgccct	7200
	ggtagattgc	ctggccgtag	gccagccatt	tttgagcggc	cagcggccgc	gataggccga	7260
			ggagcgcagc				7320
	tcggctgtgc	gctggccaga	cagttatgca	caggccaggc	gggttttaag	agttttaata	7380
	agttttaaag	agttttaggc	ggaaaaatcg	ccttttttct	cttttatatc	agtcacttac	7440
20			gtacggcttt				7500
20	atgtacggct	ttgggttccc	aatgtacgtg	ctatccacag	gaaagagacc	ttttcgacct	7560
	ttttcccctg	ctagggcaat	ttgccctagc	atctgctccg	tacattagga	accggcggat	7620
	gcttcgccct	cgatcaggtt	gcggtagcgc	atgactagga	tcgggccagc	ctgccccgcc	7680
			cggcaggtca				7740
			ggcgctgcca				7800
25			ggcgcggcgt				7860
	ggatcgatca	aaaagtaatc	ggggtgaacc	gtcagcacgt	ccgggttett	gcettetgtg	7920
			agctagctcg				7980
			gctaatcaag				8040
			acgctgcatg				8100
30			ctgctttccg				8160
30			cacgcggccg				8220
	ttcatggatt	cggttagatg	ggaaaccgcc	atcagtacca	ggtcgtaatc	ccacacactg	8280
	gccatgccgg	ccggccctgc	ggaaacetet	acgtgcccgt	ctggaagete	grageggare	8340 8400
	acctcgccag	ctcgtcggtc	acgettegae	agacggaaaa	cygecacyre	testestes	8460 8460
	cgactatege	gggtgcccac	gtcatagagc	accygaacga	aaaaattoogg	agettette	8520
35			cgacggcgca				8580
			ttgccacgat				8640
			ggccttcaac				8700
			tggtttgcga ggcagacaac				8760
			ccacggcgtc				8820
40	reatestta	acgggggcacc	ttcatctact	catttattca	tttoctcatt	tactctogta	8880
40	geeteette	geegeeaaaa	agcagetegg	taatootott	accttaacat	accocotaca	8940
	getgegegat	gractcagac	tccgccggca	actosaactt	gaccogette	ataactaaca	9000
	tatatagata	ggtgtgatte	gttgcagcct	tactactaca	tacactcaga	caaccaacse	9060
	theoretatt	tatasttta	ctcattttct	ctttacctca	ttaactcaaa	tgagttttga	9120
	tttagegegege	acadeceded	cctggacctc	acaadcaaca	tcacctcaa	gttctgattc	9180
45	aggaaggett	geggeeageg	cggcagtgcc	toggtagete	acacactaca	tgatacggga	9240
	adgaacggtt	gegeeggegg	acccggccag	cacctcaaca	acctcaccoc	cgatgcgcgt	9300
	cccaagaacg	ggcagetege	cgacaaaggc	cacttataac	cttccatccg	tgacctcaat	9360
	acactactta	accactco	ccaggtcggc	agtageceat	atgtcgtaag	agettageta	9420
	gegeegeeta	accayorod	cggctgcctt	gateggeeede	acagecaage	ccaccaceta	9480
	angegetage	tratatta	cgaagtcgcg	Geogeogate	accttcacat	cacaatcaat	9540
50	ggggggeeeeg	togatogoa	caacggttag	contrator	teccacacag	ccacceate	9600
		ccotagaget	cggaatcgac	taacagaaca	teagecceag	cgagttgcag	9660
	adcacacact	agatagatta	cgatggtcgt	cttacctaac	ccacctttct	ggttaagtag	9720
	adcastaaca	tteateentt	ccccttgcgt	atttattat	ttactcatco	catcatatac	9780
	acadenance	ratracacae	gctgttttac	tcaaatacac	atcacctttt	tagacgacgo	9840
55	cactcoatte	rttrarrar	caagetggee	aaccaaacca	ccagettoge	atcagacaaa	9900
	-339	Juliaguggu		<u>_</u>			

ccggccagga tttcatgcag ccgcacggtt gagacgtgcg cgggcggctc gaacacgtac ccggccgcga tcatctccgc ctcgatctct tcggtaatga aaaacggttc gtcctggccg 10020

EP 1 616 013 B1

9960

			Clegatette				10020
	tcctggtgcg	gtttcaEgct	tgttcctctt	ggcgttcatt	ctcggcggcc	gccagggcgt	10080
_	cggcctcggt	caatgcgtcc	tcacggaagg	caccgcgccg	cctggcctcg	gtgggcgtca	10140
5	cttcctcgct	gcgctcaagt	gcgcggtaca	gggtcgagcg	atgcacgcca	agcagtgcag	10200
			ccttcctggt				10260
			gggccaaact				10320
			attagggaac				10380
			ggcgtggtgg				10440
10			atgcgctcgg				10500
			actgtcacaa				10560
			cgcctggtgc				10620
			gcccgttggt				10680
			acaacaacac				10740
			atgcgactaa				10800
15			gtaacttagg				10860
			ccgactgcac				10920
			aagctctcgg				10980
			gtgccgtgat				11040
			cccgttccat				11100
			cgaaccactt				11160
20			atctcctgaa				11220
			ccaatgcctg				11220
			atgeetegae				11280
			aggcacgaac				11400
			tgcgctcacg				11460
25			cggttttcat				11400
20			agcagcaagc				11520
			cgcagcaggg				11640
							11700
			aagtatcgac				11760
			tgctggccgt				11820
30			ttgatttgct				11880
			acgacctttt				11940
			tcaccattgt				12000
			aatttggaga acattgatct				12000
							12120
	tagegeege	reggtaggte	cagcggcgga	ggaactette	gateegytte	elgaacagga	
35			aaaccttaac				12180 12240
			ttacgttgtc				12240
			ctgccgactg				
			gacaggetta				12360
	gegegeagat	tatataaaaa	aatttgtcca	clacgegaaa	ggcgagatca	ccaaggragr	12420 12480
40			ttcgttcaag				
			acataattgc				12540
			ataataagcc				12600
			gcaatagttg				12660
			ctagcttgct				12720
	gatigtadet	gegtteaaat	actttgcgat	cgtgttgcgc	gcccgcccgg	tgcgtcggct	12780
45			tetetegeaa				12840
			cccgtcgctc				12900
			tgcctaaccg	geteagttet	gcgtagaaac	caacatgcaa	12960
	yccecacegg	gtgcaaagcg	gcagcgg				12987

50 <210> 25 <211> 13226 <212> DNA <213> Artificial sequence

55 <220>

<223> T-DNA vector comprising a chimeric ParG expression reducing gene <220> <221> misc_feature

	<222> (1)(25) <223> Left T-DNA border (C)
5	<220> <221> misc_feature <222> (58)(318) <223> 3' nos (C)
10	<220> <221> misc_feature <222> (337)(888) <223> bar coding region (C)
15	<220> <221> misc_feature <222> (889)(1721) <223> 35S3 promoter region (C)
20	<220> <221> misc_feature <222> (1778)(3123) <223> 35S promoter region
25	<220> <221> misc_feature <222> (3130)(3431) <223> part of ParG homologue of Zea mays
30	<220> <221> misc_feature <222> (3464)(4205) <223> Pdk-intron
35	<220> <221> misc_feature <222> (4238)(4536) <223> part of ParG homologue of Zea mays (C)
40	<220> <221> misc_feature <222> (4549)(5259) <223> 3' ocs
45	<220> <221> misc_feature <222> (5281)(5305) <223> Right T-dNA border (C)
50	<400> 25

cggacggggc ggtaccggca ggctgaagte cagetgeeag aaacceaegt catgeeagtt 420 ceegtgettg aageeggeeg eeegeageat geegeggggg geatateega gegeetegtg 480	0
catgcgcacg ctcgggtcgt tgggcagccc gatgacagcg accacgctct tgaagccctg 54 10 tgcctccagg gacttcagca ggtgggtgta gagcgtggag cccagtcccg tccgctggtg 600 gcgggggggag acgtacacgg tcgactcggc cgtccagtcg taggcgttgc gtgccttcca 660	0
15	
20	
25	
30	
35	
40	
50	
55	

	ggggcccgcg	taggcgatgc	cggcgacctc	gccgtccacc	tcggcgacga	gccagggata	720
	gegeteeege	agacggacga	ggtcgtccgt	ccactcctgc	ggttcctgcg	gctcggtacg	780
	gaagttgacc	gtgettgtet	cgatgtagtg	gttgacgatg	gtgcagaccg	ccggcatgtc	840
	cgcctcggtg	gcacggcgga	tgtcggccgg	gcgtcgttct	gggtccatgg	ttatagagag	900
5		ttatagagag					960
		tagaggaagg					1020
		tgtcacatca					1080
		tcctcgtggg					1140
		cctttccttt					1200
		cgatgaagtg					1260
10		gttgaaaagt					1320
		agaccagagt					1380
		aaagactctg					1440
							1500
		gaatettaga					
45		atctctatta					1560
15		cttctgatct					1620
		ttgactgcat					1680
		tagatcgtct					1740
		tcgaattcga					1800
		agcttaacag					1860
20	cctcatatca	actactacgt	tgtgtataac	ggtccacatg	ccggtatata	cgatgactgg	1920
20	ggttgtacaa	aggcggcaac	aaacggcgtt	cccggagttg	cacacaagaa	atttgccact	1980
	attacagagg	caagagcagc	agctgacgcg	tacacaacaa	gtcagcaaac	agacaggttg	2040
		ccaaaggaga					2100
		agcaaaaagc					2160
		aagagatctc					2220
25		gaaggaagtt					2280
20		gcctcttcaa					2340
						gatcaaatac	2400
		aggttaaaga					2460
		tatttctcaa					2520
		caaggcaagt					2580
30		tgcatggagt					2640
		cagttcatac					2700
		gagcacgaca					2760
							2820
		gctattgaga					2820
		gctatctgtc					
35		cattgcgata					2940
		ggacccccac					3000
		caagtggatt					3060
		tcgcaagacc					3120
		aatctggctg					3180
		aacaccatct					3240
40		tcaattccag					3300
		gaaaccctga					3360
		ttgttaatta					3420
		gggtacccca					3480
	ataaaatagt	taagtgatgt	taattagtat	gattataata	atatagttgt	tataattgtg	3540
	aaaaaataat	ttataaatat	attgtttaca	taaacaacat	agtaatgtaa	aaaaatatga	3600
45	caagtgatgt	gtaagacgaa	gaagataaaa	gttgagagta	agtatattat	ttttaatgaa	· 3660
	tttgatcgaa	catgtaagat	gatatactag	cattaatatt	tgttttaatc	ataatagtaa	3720
		tttgatgaat					3780
		aataatattt					3840
		atattttagt		-			3900
50		tcaataaaca	_			_	3960
50	_	cagtaatcta			-		4020
	_	attttatata			-		4080
		tttattaact					4080 4140
		aaggtaacat		-	_		4140
		agttgggaag					4200 4260
55							
00	LLYCayagaC	acgttctcaa	aayuytayta	uccaacaaad	gggugaagag	corgrgatge	4320

agcaatecae tgaateatge tettgattte agggttteea ceaaaageae caeaacecea 4380 gtttcctgtt gaaactccta cgtactcact ggaattgatg cttgaaaagt catccttgtt 4440 gtgcaaatcc tggaaaaagct tcgcatagag atggtgtttc gattgatcga aaaatccaca 4500 aaatgoottg ttoacttooc ttaggagaca gocagattot ctagagtoot gotttaatga 4560 5 gatatgegag acgeetatga tegeatgata tttgetttea attetgttgt geacgttgta 4620 aaaaacctga gcatgtgtag ctcagateet tacegeeggt tteggtteat tetaatgaat 4680 atatcacccg ttactatcgt atttttatga ataatattct ccgttcaatt tactgattgt 4740 accctactac ttatatgtac aatattaaaa tgaaaacaat atattgtgct gaataggttt 4800 atagcgacat ctatgataga gcgccacaat aacaaacaat tgcgttttat tattacaaat 4860 ccaattttaa aaaaagcggc agaaccggtc aaacctaaaa gactgattac ataaatctta 4920 10 ttcaaatttc aaaaggcccc aggggctagt atctacgaca caccgagcgg cgaactaata 4980 acgttcactg aagggaactc cggttccccg ccggcgcgca tgggtgagat tccttgaagt 5040 tgagtattgg ccgtccgctc taccgaaagt tacgggcacc attcaacccg gtccagcacg 5100 gcggccgggt aaccgacttg ctgccccgag aattatgcag cattttttg gtgtatgtgg 5160 gccccaaatg aagtgcaggt caaaccttga cagtgacgac aaatcgttgg gcgggtccag 5220 15 ggcgaatttt gcgacaacat gtcgaggetc agcaggacct gcaggtcgac ggccgagtac 5280 tggcaggata tataccgttg taatttgtcg cgtgtgaata agtcgctgtg tatgtttgtt 5340 tgattgtttc tgttggagtg cagcccattt caccggacaa gtcggctaga ttgatttagc 5400 cctgatgaac tgccgagggg aagccatctt gagcgcggaa tgggaatgga tttcgttgta 5460 caacgagacg acagaacacc cacgggaccg agettegate gageateaaa tgaaactgea 5520 atttattcat atcaggatta tcaataccat atttttgaaa aagccgtttc tgtaatgaag 5580 20 gagaaaaactc accgaggcag ttecatagga tggcaagatc ctggtatcgg tctqcgattc 5640 cgactogico aacatoaata caacotatta atticocoto gicaaaaata aggitatoaa 5700 gtgagaaatc accatgagtg acgactgaat ccggtgagaa tggcaaaagt ttatgcattt 5760 ctttccagac ttgttcaaca ggccagccat tacgctcgtc atcaaaatca ctcgcatcaa 5820 ccaaaccgtt attcattcgt gattgcgcct gagcgagacg aaatacgccg ctgttaaaag 5880 gacaattaca aacaggaatc gaatgcaacc ggcgcaggaa cactgccagc gcatcaacaa 5940 25 tattttcacc tgaatcagga tattcttcta atacctggaa tgctgttttt ccggggatcg 6000 cagtggtgag taaccatgca tcatcaggag tacggataaa atgcttgatg gtcggaagag 6060 gcataaattc cgtcagccag tttagtctga ccatctcatc tgtaacatca ttggcaacgc 6120 tacctttgcc atgtttcaga aacaactctg gcgcatcggg cttcccatac aatcgataga 6180 ttgtcgcacc tgattgcccg acattatccg aatctggcaa ttccggttcg cttgctgtcc 6240 30 ataaaaccgc ccagtctagc tatcgccatg taagcccact gcaagctacc tgctttetct 6300 ttgcgcttgc gttttccgga tettettgag atcetttttt tetgegegta atetgetget 6360 tgcaaacaaa aaaaccaccg ctaccagcgg tggtttgttt gccggatcaa gagctaccaa 6420 ctctttttcc gaaggtaact ggcttcagca gagcgcagat accaaatact gtccttctag 6480 tgtagccgta gttaggccac cacttcaaga actetgtage accgectaca tacctegete 6540 tgctaatcct gttaccagtg gctgctgcca gtggcgataa gtcgtgtctt accgggttgg 6600 35 actcaagacg atagttaccg gataaggcgc agcggtcggg ctgaacgggg ggttcgtgca 6660 cacageecag ettggagega acgaeetaca eegaaetgag ataeetacag egtgagetat 6720 gagaaagcgc cacgcttccc gaagggagaa aggcggacag gtatccggta agcggcaggg 6780 toggaacagg agagogcacg agggagotto cagggggaaa cgcotggtat otttatagto 6840 ctgtcgggtt tcgccacctc tgacttgagc gtcgattttt gtgatgdtcg tcaggggggc 6900 40 ggagcetatg gaaaaacgee ageaacgegg cetttttaeg gtteetggee ttttgetgge 6960 cttttgctca catgttcttt cctgcgttat cccctgattc tgtggataac cgtattaccg 7020 cetttgagtg agetgatace getegeegea geegaacgae cgagegeage gagteagtga 7080 gcgaggaagc ggaagagcgc ctgatgcggt attttctcct tacgcatctg tgcggtattt 7140 cacaccgcat atggtgcact ctcagtacaa tctgctctga tgccgcatag ttaagccagt 7200 atacacteeg etategetac gtgactgggt catggetgeg cecegacace egecaacace 7260 45 cgctgacgcg ccctgacggg cttgtctgct cccggcatcc gcttacagac aagctgtgac 7320 cgtctccggg agctgcatgt gtcagaggtt ttcaccgtca tcaccgaaac gcgcgaggca 7380 gggtgccttg atgtgggcgc cggcggtcga gtggcgacgg cgcggcttgt ccgcgccctg 7440 gtagattgcc tggccgtagg ccagccattt ttgagcggcc agcggccgcg ataggccgac 7500 gcgaagcggc ggggcgtagg gagcgcagcg accgaagggt aggcgctttt tgcagctctt 7560 cggctgtgcg ctggccagac agttatgcac aggccaggcg ggttttaaga gttttaataa 7620 50 gttttaaaga gttttaggcg gaaaaatcgc cttttttctc ttttatatca gtcacttaca 7680 tgtgtgaccg gttcccaatg tacggctttg ggttcccaat gtacgggttc cggttcccaa 7740 tgtacggett tgggtteeca atgtacgtge tatecacagg aaagagaeet tttegaeett 7800 tttcccctgc tagggcaatt tgccctagca tctgctccgt acattaggaa ccggcggatg 7860 cttcgccctc gatcaggttg cggtagcgca tgactaggat cgggccagcc tgccccgcct 7920

EP 1 616 013 B1

7980

cctccttcaa atcgtactcc ggcaggtcat ttgacccgat cagcttgcgc acggtgaaac

agaacttett gaaeteteeg gegetgeeae tgegttegta gategtettg aacaaceate tggcttctgc cttgcctgcg gcgcggcgtg ccaggcggta gagaaaacgg ccgatgccgg gatcgatcaa aaagtaatcg gggtgaaccg tcagcacgtc cgggttcttg ccttctgtga tetegeggta catecaatea getagetega tetegatgta eteeggeege eeggtttege tetttacgat ettgtagegg etaatcaagg etteaceete ggatacegte accaggegge cgttcttggc cttcttcgta cgctgcatgg caacgtgcgt ggtgtttaac cgaatgcagg tttctaccag gtcgtctttc tgctttccgc catcggctcg ccggcagaac ttgagtacgt tcatggattc ggttagatgg gaaaccgcca tcagtaccag gtcgtaatcc cacacactgg

5

10 Categoragi tegetegita egettegiae geogaalae giocagtee atgategete 6644 gactategeg gittectae gaegorae egettegeegg atactage 6706 ggattegate agegorget tigeeagate tegegeegg gattettege 8706 geogetegg ettectaet gaegorgee cagettegeegg gattettege 8801 16 egattegate agegoregg ettectaet tetecaecag gettetaeace agegorege 8801 16 ecattegaeg egettegeg gettegaal egetteget actecaecag gettegetaace agegorege 20 ettecaecae tigegeege ettecaecae tigegegee ettecaecae tigetteges geogetegg 20 ettecaecae tigegege ettecaecae tigettege geogetegg geogetegg ettecaecae geogetegg 20 ettecaecae tigetgetetteg categoege tigetgetetteg actecaecae geogetegg geogetegg geogetegg geogetegg geogetegg geogetegg geogetege geogetegg geogetegg <t< th=""><th></th><th></th><th>ggeeagaegg</th><th></th><th></th><th></th><th></th><th></th></t<>			ggeeagaegg					
cctogccagc togtoggta cgdttogaca gacggaaac ggdcagto atggatgctge 8644 gactatogg ggtogcag toatagaca toggacgaaaa atactggt tgdttottge 8766 ggttoggg ggtotcatato gacgoggaca cgadsaaca agactgoggt 8766 ggcogtiggg ggtottgacg ggacadaac cacaggacgg ggtottgacg ggottgacg ggottga	10	ccatgccggc	cggccctgcg	gaaacctcta	cgtgcccgtc	tggaagctcg	tagcggatca	8580
 gactategeg gigteccaeg teatagaea teggaaegaa aaatetegt igdesgig gattetige 8700 ecteggegg eitectaate gaeggeeae eggelegeeg gattetige 8760 ggattegate agegeeget igdeeaga gigtegeeg gattetige 8700 ecagitgeae gigeeigega gigtegeeg eitecaeee agegegeg igdetegeeg gitecaeee aegegegeg gigtetegeegegegeg gigtegeegeg gitectaeee agegeegee igdeetegegegegegegegegegegegegegegegegege	10							8640
ccttgggcgg cttcctactgacggggcaccggttgccggggtttctge8760iggattegateggcctggggggcttdgegggctttgegat8810iscgattgcacggggcggggggcttggacggattgeggggttgggg8810ccatggcattggggcggggggatacaccagggcggdggtttggggggttggggg8810ccatggcattggggcggggggatcacaccaggcggttggttgggggggtttggggggttgggggg8810cctcacacatggggcgggggatcacaccaggcggttgtttgggggggttgggggggggttggggggggggggggggggggggggggggg								8700
ggattcgate agecggcget tgecatgate caceggggg tgettctace tgatgcget 8821 gecgtggg ggetoggg gectaaat tecaceag gtectacace agecgege 8884 ccagtgcat tgecagggeg gectaaat caceacag gtectacace agecgege 8884 ccagtgcat tgecagggeg gecagacaac cagecgett gttcttgatt ttecatgeg 906 cctccttag ccgctaaat tecattate attatteat tgettagat accegergg1 gtttgategg 906 cctccttag cggtagate gaagtegg attgecagg tagtagategg 224 gtttgecagg tggtgatet cacegegeaa ttgaagtg accegetta ttggtgges 234 gtttgecagg tggtggatet cacegegeaa tgaagtg accegettag 220 gtttgecagg tggtggatet cacegegeaa tgaagtg accegettag 232 20 gttgecagg tggtggegg gegaagtge ggatgged ggatgged ggeetggate ggeetggae ggeetggae gttggtggt ggegggg ggagggegg ggagggeg ggagggg cggegggg ggeggggg ggggggg gggggggg gggggg								8760
15 cgcgctggg ggctcggg ggcttbaact ttcccagg gtcbtcaacg ggcgcgggggggggggggggggggggggggggggggg								8820
15 eggtttgtac egggeeggat ggttgeegga egteseget ettgggggtt 1994 16 ccagtgccat tgeagggeg eggaeacac eggeeggta gettegggae ettgggget 1900 17 cctccattag egggeatte caeggegte gtgeetggt gttetta actetgga g12 20 gtetgeeagg tgttegatee cegeeggea etggaegtg gegeeggt gegeegge ggeeggege								8880
ccagtgccattgaggggcgggagcaggcgggcgctgtggtcgcctgttgtcgccgatgog20ctccacttagcggcgatgtatcagatagcagtcagttatcattatatttgtcattaccegttagtg20gtctgccagttggcgatgtatcagatagcagtcagtgtgtcagtggcgctggtgcgcggtgggcgggggcggg21ttagttgtggcgcagggcggcagggggcgggggcggggggcgggggggcgg	15	cgatttgtac	cqqqccqqat	ggtttgcgac	cgtcacgccg	attcctcggg	cttgggggtt	8940
cctccacaa tgggcattccaggcatcggtgctggttgttcttagttttcctggcg20cttcagctggtgtgatctccgcagaactgggcaggtgtgatctcggcagaacggcagaacggcagaaggcggcagaacggcagaaggcggcagaacggcagaaggcggcagaaggcggcagaaggcggcagaacggcagaaggcggcagaaggcggcagaaggcggcagaaggcggcagaaggcggcagaaggcggcagaaggcggcagaaggcggcagaaggcggcagaaggcggcagaaggcggcagaaggcggcagaaggcggcagaaggcggcagaaggcggcagaaggcgcggcaaggcagcaaaggcggcagaaggcgcagaaaggcgcagaaaggcgcagaaaggcgcagaaaggcgcagaaaggcgcagaaaggcgcagaaaggcgcagaaaggcgcagaaaggcgcagaaaggcgcagaaaggcgcagaaaggcgcagaaaggcgcagaaaggcgcagaaaaggcggcagaaaagggcggcagaaaaaaggcgggaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa		ccagtgccat	tacagaacca	gcagacaacc	cagccgctta	cgcctggcca	accgcccgtt	9000
cctcctttag ccgctaaatteatctactcatttatttatttgcctattactctggtag91220gtctgccagtgtgtgtatctccgcggcaactgaagttgaccogttaat92420gtctgccagtgtgtgatctgcgcggcgaggcgggagg924421gtctgccagtttgcggcgggcgctgggaggggcgtgggggggggggggggggggggggggggggggg								9060
20cttcagcttg tattcagata geageteggt aatggtettg cettggeta eegestacat91420cttcagcttg gtggtatetcegestggetacegestgetagetggeage924431gtetgecaggctggacettggetgetgeggggedggget924432agaceggtgtgtetgecaggctggacettgggestegggggestegge924433agaceggtggteggecagectggacettgcggesteggtggestegge924434agaceggtgggeagteggggeagteggggeagtegg924492434agaceggtggecageageggeagteggggeagtegg924425cetttgategccaggacagagetggegggttggeeggggeggetgg92436cetttgategceggeagacaggacagagetggegggetggegg92436getgggggtcaggacagacaggtegggttggeggggetgedgg92437ggegggetgateggeggcaggacagaaaggttagggttgategg92438gteggeggtcaggeggacaaaggttagggttgategg92439geggeggetgateggeggcaggacagaaaggttag93030gegeggggetgateggegggateggegggateggegg100236cggecggatttagetggeggateggegggateggegg100236caggacgeaaggeggggateggaca102437cggecgggtaatggtegggecgacagaaaggeggeg36ceggegggtgateggegggaceggaaaacggaag37cggecgggtcategaagattagac								9120
20ettcagettg gtgggetact cegeegea etgaaagttg acceptte tggetggegt 924420gtetgeeag etggeeateg tggeeateg gtegetggae ggeeggeet ggeetggae ggeeggeateg924421gtetgeeag etggeeage ttggeetegae ggeegeagegagetttgat 936622agaaeggttg tgeeggeeg eggeaggeet ggeeategee ggeeaggeet ggeeteggea942423cettgateg ceeggeage etggeeageet ggeeaggeet ggeeaggeet gaeceagge942425cettgateg ceeggeage eggeeaggeet ggeegeaa etcacege gaeceage ggeegeaa942626cettgateg ceeggeage ggeegeea eggeegeaa etcacege gaeceage ggeegeaa960027geeggeage egateacea eagetegge gtggeeaa etcacege gaeceage ggeegeaa972230geeggeage egateeaa gaageege eggeegaa eagetegae eggeegaa eegeeeaa eggeegeag eggeegaa eagetegae gaeggeege eggeegaag eegeegaag eegeegaag eggeegee eggeegaa eagetegae gaeceage eggeegaa eagetegee ggeegae eageeggee eggeegae aaegeteg geegee eageegaage eggeegae eageegaag efgettet tegeegae eggeegee eagetegae eagetegee eggeegee eagetegae aaegetege eggeegee eagetegae aaegetege eggeegee eagetegae aaegetege eggeegee eagetegea eacetegee eagetegee eagetege eagetegee eagetege eagetege eagetege								9180
20 gtctgccagg ctggccacg ttggcacct gctgctggt gcgctggac gcggcgct g330 1 taggtgtt gtgcgcagg ctggacctg gggagcgt gcgctcggg ttctgatta 930 1 taggatgtt gtgcggcgg cggagtgct gggtagta gagttggttagta 942 1 agaacggttg tgcgggg cggagtgct gggtagta cgcctgggg gtgggtggg 942 25 ccttagatg cccggaaca gacaaggc gctggaac acgccagg gtggctggg 942 26 cgtgctta ccaggtagt ggtggcgg ggtggccat ttgctgagg gtggctgg 943 27 ggcgtcgt ggataca caggtagg ggtggcgt ttgcgtagg gtggctgg 943 28 ccgtgctta caggtagt ggtggtgg ggtggcat ttgcggagg ggtggcgg 920 29 gggcgtcgt ggatagtaa caggcaag ggtggcgg ggggggad gagtggga acagcaag ggggcaa acggaacag gggtggtgg gggggad acggcagg gggggggggggggggggggg		cttcagcttg	gtgtgatcct	ccqccqqcaa	ctqaaaqttq	accegettea	tggctggcgt	9240
 tagogtgtti gigottitige teattitete titaeteata taateaata gagtittigat 9366 titaatticaa egegeeagee eggaeeteg eggaeeteg eggeeageg egeeteggi gataeggga 9428 agaaeggitg tgeeggeeg gegeateget eggeeagea ecteaege gategeetig 9544 ceatingateg eegegeaea eccegeeage geeteggaa ecceaege gaeeteaeg eegetetaa ecageteeae eaggeegg gegegeeata tyteetaagg getiggeeg eegetegtea ecceggeaea eaggeegg gytggeeata tyteetaagg getiggeeg eegegeegge egateedae gaagteege eggeegateg eggeegateg eggeegaee ecceggeaeae eaggeegge eggeegaeae ecceggeaeae ecceggeaeae eccegee eccegeaeae eccegee eccegeaeae eccegeaeaeaeaeaeaeaeaeaeaeaeaeaeaeaeaeae	20							9300
 ttaatttcag cggcagcg ctggcactg cggcagcgt gccctcggg ttctgattca gaacggttg tgccggcgg ggcagtgct gggtagcta cgcctcggg gataggga cctttgatg cccggcaac gacaacgg cccggcag gcctggaac ccccaccg gatagggg cctttgatg ccgcgaac gacaaggc gcttgtagc ttccatcegt gactccatg ggcgtcgta ccagcaaca gacaaggc ggtggcaata tgtcgtagg gctggcgg ggcgctcgt cgatcata gagtgggc cggcgggg ggtggcaat ccgccagg gggggcgc ggcggggt ggtgggaac acggcaaga ggggggggg ggggggg cgataggg gggggggg gggggggg gggggggg gggggggg								9360
agaacggtgtgccgcggcggcagtcgtacccggccggcggtagtcgtaggcgtcggggtagtcgtaggcggtcggggtagtcgtaggtggtggg25ccttgatcgcccggcacacgacaaggccgctggtgacacattcacggggcgctcataggcgctcataggcgcactatggcgcactatggcgcacacggcgcacaggggcgcacacaggcgcacaggggcgcacaggggcgcacaggggcgcacaggggcgcacaggggcgcacaggggcgcacaggggcgcacaggggcgcacaggggcgcacaggggcgcacaggggcgcacaggggcgcacaggggcgcacaggggcgcacaggggcgcacaggggcggacaggggcggacaggggcggacaggggcgggggggatgggggggcgggggggggggggggggggggggggggggggggg								9420
tcaagaatgggcagctgtacccggccagcgcctcggcaacctactcgccgagcgcgggfa25cctttgatcgcccggcgacagacagagccgcactcaatggfagcgtgttaccagtccaaccaggtcggggggcgcatatgtcgtaagggfttggctgggcgtccgtcgatgccgacggacggcatggggcgcatcgcggcgggggggcgatcgggggggatcggcgggggatcggatggggggatggggggatgggggggatggggg30gcgggggtagatggggtggatggtggggatggggggatgggggggcgaggatgatggggatggatgggggggatgggggggatgggggggcggggtgatggggatccttgggttacccgggggggatgggggggcggggatatagggtagcggttttatcacggacgggatgggggggcagggatcatagcgaccagtggggggccgggggacgggggggccaggatcatactcagcatccaggagggggcggggggacggggggccaggatcatacgaatgcgcggttcatccggggggggcggggggccaggggttcatgcagcccaggagggggcggggggcggggggcctgggttcatgcagcccaggagggggcgggggggcggggggcctggggttcatgcagcccaggagggggcgggggggcggggggcctggggttcatgcagcccaggagggggggggggcctggggttcatgcagcccaggagggggggggggccaggatcatcagcagccaggaggggggggggggccaggggcagcgggggggcggggggggggggggccaggggttcatgcagcccagcaggggggggggggccaggggggcggggggggccgggggggg		agaacggttg	taccaacaac	ggcagtgcct	qqqtaqctca	cacactacat	qatacqqqac	9480
25cctttgategcccagacacagacaaaggegettgatagettrateateggacctcataget30ggcggatcagatggctggatggctgggtggtgatagatggcggggtggtggggtggtggggtggtgggggtggtgggggtggtgggggtggtggggggtggtggggggtggtggggggtggtggggggtggtggggggtggtggggggtggtgggggggtggtggggggggtggtggggggggtggtggggggggtggtggggggggtggtgggggggggtggtggggggggggggggggggggggggggg		tcaagaatgg	gcagetcgta	cccqqccaqc	gceteggeaa	cctcaccqcc	gatgcgcgtg	9540
 cgctgcttaa ccagctccac cagtcggeg gtggccata tgtcgtaagg gcttggctge 962 accggaatca gcacgaagt ggctgcctt acgcggaag cagccaagt cgcgccgg 972 ggcgctccgt cgatcatae gaagtcgge cggcgatg ccttcacgt gcgcgacadg ggcggacadg cggggata gagggtge gatggtcgt tgtcgtcaac cggccaatg 984 cgggcactg cctggggat gaagtcgac aacagaacat cggcccgg ggttgaagg 990 ggcgggda gatgggtge gatggtcgt ttgctgacc cgcctttg gttaagtaa 9966 ggcgggcacg cctggggat gatggtcgt ctgtcgac cggccgg ggttgaagg 990 ggcgggata acct tcatggtt cccttgggt ttgttatt tactaacg acatatacg 1002 cagcagacg atgacgcaag cfgtttaat caaatacaca tcactttt agacgaacg cggccaggat ttaatggac cgcaggtg gacggcgg cggcggtcg aacgtggcg 1008 ggccggg tttaatgac cgcaggtg ggcggcg cagctggga cagggggg 1002 cggccggat ttaatgggc cgacggtg ggcggcg cggcgggg cgacgggg 1022 cgggcggg tttaatgag cggcggtgg ggcggggg cgacggggg cgacgggg 1022 cgggcggg tttaatggg cggcggtgg ggcggggggg cgacggggg cgacgggg 1022 ggcctggt ttaatgag cggcgggg ggcgggggggg cgacgggggg cgacgggg 1022 ggcggggg ttcatgggg ggcgaacag ggcggggg cgacgggggggg cgacggg 1022 ggcggggg ttgatggt gtcctctgg ggggggg cgaacggg cagggggg 1022 ggcggggg ggcgaacag ggcggagg ggcgaacag ggcggggg ggcgaacag 1044 cggcggggg ggcgaacag ggcggagg ggcgaacag ggcggggg ggcgaacagg 1042 ggcggggg ggcgaacag ggcgggg ggcgaacag ggcgggg ggagggg 1024 ggcggggg ggcgaagg ggcggg ggcggg ggagggg ggagggg 1024 ggcgggggg ggcgggg ggcgaacag ggcgggg ggcgggg ggagggg 1024 ggcgggggg gggggggggggggggggggggggggggg	25	cetttgateg	cccgcgacac	gacaaaggcc	gettgtagee	ttccatccqt	gacctcaatg	9600
accggaatcagocgcccgggocgccctggyr2ggcgtccgtcgatccactacgaagtcggccggccgatgcctcacgtcgoggtcatc30gcggcggtgcgtggtgtgatggtggtggatggtcgccggccggggatggtggt30gcggggttgatggtggtgatggtggtggatggtcgtgatggtggtggatggtggt30gcggggttgatggtggtgatggtggtccggccggggatggtggtggatggtggt30gcggggttcatcaggtcgcctgggtggtccggccggggatggtggtggatggtggt30gcggggttcatcaggtcgcatcatcgccggccggggatggggt31gcgcggtttctagggtggcctggtggggtggcggggtggcggggt32cggccggatttcatgcaccggccgggtggcggggggggcgggggg33cggccgggtcatctcgccccggcagggcctgggcggggcggggg34cggccggggttcatgcaccggcaggggggcgggggggcgggggg35cggcgggggttcatgttgttccttggggcgggggggcgggggggcggggg36cggcggggggtcagggggcgggggggcggggggggggggggatggggg37ggccgggggggtcagggggcgggggggcgggggggatggggggatggggg36cggcggggggtcagggggcgggggggcgggggggatgggggggatgggggggatgggggggatgggggggatgggggggatggggggatgggg36cggcgggggggtcggggggtcgggggggcggatggggatggggggatggggggatgggggatgggggatggggggatggggggatggg <th>25</th> <th>coctocttaa</th> <td>ccagetccac</td> <td>caggtcggcg</td> <td>gtggcccata</td> <td>tgtcgtaagg</td> <td>gettggetge</td> <td>9660</td>	25	coctocttaa	ccagetccac	caggtcggcg	gtggcccata	tgtcgtaagg	gettggetge	9660
ggcgctccgtcggtcactacggagtgcgccggccactgccggccactgcggtgggcg30gcgggggtagatgggtgcgatggtgcgggtggtgcggtggtggggtggggg30gcggacgggatgggtgcgatggtgcgatggtgccggcccggggtgggg30gcggacgggatgggtgcgatggtgcccttggtacaccacgacacggtaggg30gcggacgggatgggtgcgatggtgcccttggtacaccacgacacggtaggg100232gcggcggcagacgggcagacgggcgccacttgggggccaggtg100235cggccgggtcatcccgccagtgacggcctcggccggcctggcgggcctggcgg102636cggccgggtcatcccgctcggctacggggcgggcgcctggcgg102637cggccgggtcatcccgctcggctacggggcggcgaacggtcgcctggcgg102636cggccggtcatcccgctcggtcaggggcggcggacgggg102637cggccgggtcatcccgctcggccggggcggcgaacgggcgcctggcgg102636cggccggtcatccgcgtcggccggggcgggggacggggggacggggg102637cggccggtcatccggcggccgggcctggcgggacggggg102636cggccggtcatccggacatccgcgcggccggcctggcg102637cggccggtggctggggcatcccggcggcggggacggggg102636cggccggtcgtcgggcatcgggggcgacgggacgggg102637cggccggtgg		accggaatca	gcacgaagtc	aactacctta	atcococaca	cagccaagtc	caccacctag	9720
940 geteggeggi cgatgeegae aaeggttage ggttgatett ecegeaegge cgceaateg 984, cgggeaegte eceggggate ggategaet aaeagaaeat ecgeeegee ggeeeaateg 990, gegeggetag gatggtteg gatggetget tigeetgaee egeettette ggttaagtaea 996, gegataaeet teatgegte ecettgegta titgetgaee egeetgge gateggegge 1002, ageeggeeg atgaegee aageeggee egeetgge eageeggee eageeggee eageetgge eageeggee etceedgee eageeggee aageeggee aageeggee aageeggee eageeggee eageeggee eageeggee eageeggee eageeggee eageeggee eageeggee eageeggee eageeggee eageeeggee eageeggee eageeggeeeggee eageeeggee eageeeggee eageeeggee eageeeggee e		agcactccat	cgatcactac	gaagtcgcgc	cqqccqatqq	ccttcacgtc	gcggtcaatc	9780
 30 cggcactgc cctggggatc ggatcgact aacagaact cggccccgg gagttgcagg 9900 30 gcgcgggta gatggttgc gatggtcgt ttgcctgac cgcctttctg gttaagtaca 9960 gcgataacct tcatgcgttc ccttgcgta tttgtttatt tactcatcg atcatacag 10020 cagcgaccgc atgacgcaag ctgtttact caaatacaca tcacctttt agacggcggg 10080 ggccaggat ttcatgcggc agccggcg gccaggccg cagctgga tcagacaaca 10140 cggccaggat ttcatgcgg cgcaggtg ggccggg gggggctg accaggcg 10260 cctggtgcgg ttcatcgc tcgatctt cggtaatgaa aacggtcg tccgggcg 10260 cctggtgcgg ttcatggt ggcggtaca agcgggacg ccagggcg ccaggggg cgacgggcg cagacgg 10260 cctggtgcgg ttcatggt ggcggtaca ggtcggacg ccagggcg ccaggggg cgacggg cgacgggg cgacggg cgacggg cgacgggg cgacggg cgacggg cgacgggg cgacggg cgacgg cgggggg cgacggg cgacggg cgacggg cgacggg cgacggg cgacggg cgacggg cgacggg cgacgg		atcaaacaat	cgatgccgac	aacqqttaqc	ggttgatctt	cccgcacggc	cgcccaatcg	9840
30gcgcgggctagatgggttggatggttgcgttggtcgacgccgtataactgcataactccatgggtccccttggctatttgtttatttactcatcgatagtacagog35gcgcaggatctcatgcgttctcagggggggcggggggggggggggggggggggggggggggggggg		coordector	cctggggatc	ggaatcgact	aacagaacat	cggccccggc	gagttgcagg	9900
gcgataaccttcatgcgtccccttgcgtatttgtttatttactcatcgatatatag10020gctcggtttcttcatgcgaccggctggccagctggcgccactttttagacggcgc10080gctcggtttcttcatgcagccggcaggcggccaggtcggacacgtcgggctggcgtacacgtaca1012035cggccggatcatctccgctcggtaggggcctggggggcctggcggcctggcgggtcctggcgg10260ggcctggtgttcatgcttgtcctcggtgcgtcaggggcctggcgggcctggcggg10260ggcctggtgaatgcgtcctccggagggggcgtcagggcctgggggg10260ggcctggtgaatgcgtcctccgggggggcctgggggggcctggggggg10260ggcctcggtgcatctcggcccgggggggcctgggggggccgggggggg10260ggcctggtgttcatggtggctccggtgggggccgggggggggccaggggggg10380ttcctcggtcggccggtggctcaggtggctcgggggg1026010380ttcctggtgggtcgggggggctgggggggctgggggggccgggggggg10440cgccggtgggggtcgggggggtcgggggggccggcggcgacagggg10680ggccgggtgggtcgggggggtcgggggggccggcggcgacagggg10680gccggggggggccggggggggccgggggggccgggggggccggggg10680gccggggggggccggggggggcggggggggccggggg10680gccggggggggccgggggggcggggggggccggggg10740caggcgggcggcggggggggcggggggggcggggg10740ggcg	30	acacaaacta	gatgggttgc	gatggtcgtc	ttgcctgacc	cgcctttctg	gttaagtaca	9960
45cagcgaccg cgccgcgcg gccagccg gccagcgcg gccagcgcg gccagcgcg gccagcgcg gccagcgcg gccagcgcg gccagcgcg gccaggtg gccagcgcg gccaggtg gccaggtg gccaggtg gccaggtg gccaggtg gccaggtg gccaggtg gcctggtgg gccaggtg ggccgcgcg gccaggtg gcctggtgg ggccgcggg gccaggtg gcctcggtg ggcctcgggg ggccgcggg gccaggtg ggcctgggg ggccaggtg ggcctgggg ggccaggtg ggcctgggg ggccaggtg ggcctgggg ggccaggtg ggcctgggg ggccaggtg ggcctgggg ggccaggtg ggccgcggg ggccgcggg ggccgcggg ggccagcgg ggccggggg ggccagcgg ggccagcgg ggccagcgg ggccagcgg ggccgggggg ggccaactt caggcgggg caggcgggg ggccaactg ggccggggg ggccaactg ggcggggg ggccaactg ggccggggg ggccagcgg ggccagcgg ggccgggggg ggccaactg gccgggggg ggccagcgg ggccggggg ggccaactg gccggggg ggccagcgg ggcgggggg ggcgggggg ggccgggggg ggccgggggg ggccgggggg ggccgggggg ggccgggggg ggcggggggggggg ggcgggggg ggcgggggg ggcgggggggggggggggggg ggcgggggg ggcgggggggggggggggggggggggggggggggggg		gcgataacct	tcatgcgttc	cccttqcqta	tttgtttatt	tactcatcgc	atcatatacg	10020
35gctcggtttcttcagcggcccagctggttgggccaggttgggcgggcgccagacaacc101435cggccggatttcatgcagccggcaggtgggcdgcgcgtcatgcagctcagacaacc102036cggccggtcaatcggtcctcaggtgggttcatgctgggcttcggtcaatgggcc102637ggcctcggtcaatgcgtcctcaggaaggaccgggggcgcctgggcgg102638ggcctcggtcaatgcgtccccaggaaggaccgcgccgccagggcgg103239ggcctcggtcaatgcgtccccaggaaggaccgcgccgccagggcgg103230ggcctcggtcaatgcgtcccacggaaggaccgcgccgccaggggg103230ggcctcggtcggtcagaggggccagcgccaggggggg1044cgccttttacggtggggggccaaggggcadgggggacggcg1044cgcctctttacggtggggggccaagggggcagggggggacggcg103240gctcgggtgggtcggggggccagggggccagggggcaacgg1062acaacacatgcggcggggggggccaggcgggcaatggcgggcaacggg1062acaacacatgcggcgggggggccaggggggcaacggggcaacgg106240gccgggggggccgggggggccgggggggccaggggggcaacgg1062acaacacatgcggcggggggggccggggggggccggggggggcaacgg1062ggccgggcggcctgggggggcggggggggcgggggggggcggggggg1062ggccgggggggcgggggggggggccgggggggggggcgggggggggggg		cagcgaccgc	atgacgcaag	ctgttttact	caaatacaca	tcaccttttt	agacggcggc	10080
 ³⁵ ³⁵ ³⁶ ³⁶ ³⁶ ³⁷ ³⁶ ³⁷ ³⁶ ³⁷ ³⁶ ³⁷ ³⁶ ³⁷ ³⁷ ³⁷ ³⁶ ³⁷ ³⁷ ³⁷ ³⁷ ³⁸ ³⁵ ³⁶ ³⁶ ³⁷ ³⁷ ³⁷ ³⁷ ³⁷ ³⁸ ³⁵ <li< td=""><th></th><th>actcaattte</th><td>ttcagcggcc</td><td>aagctggccg</td><td>gccaggccgc</td><td>cagettggea</td><td>tcagacaaac</td><td>10140</td></li<>		actcaattte	ttcagcggcc	aagctggccg	gccaggccgc	cagettggea	tcagacaaac	10140
 ³⁵ eggcegegat cateteege tegatetett eggtaatgaa aaaeggteg teetggeegt 10226 ³⁵ ectggtegg ttteatget gtteetett eggeage ecteggeege eetgegeege eetgegeege teggegeege teggegeege etteetgge ggeegegege etteetgge ggeegegege etteetgge gateageeg eggeegege etteetgge gateageeg eggeegegeg eeteetgge ggeeggegg ggeegaede teggeegge ggeeggegg eggeeggegg ggeegaede ggeeggeeg ggeeggeeg geeteetgg aatgeeegg eggeeggeeg etteetgge gateageeg eggeeggeg taggeeggeeg geeteetgg aggeeggeeg ggeeggeeg ggeeggeeg ettegeegg eggeegge		cggccaggat	ttcatgcage	cgcacggttg	agacgtgcgc	gggcggctcg	aacacgtacc	10200
35cctggtgcggttcatgcttgttcctcttggcgttcattctcggcggcgccagggcgtc1032ggcctcggtcaatgcgtctcacggaaggcaccgcgccgcctggcctcggtgggcgtacagggctgcgcg1038ttcctcgcgcgctctttcacggtgcggcttcctggtcggtcgacgatgcacgccaggacgtcgg1044cgcctctttcacggtgcggcttcctggtcgatcagccgcggggtgg1050105040gctccggtgcggtcgatgattagggacggccagcccgggacacacgg1052caacaccatgcggcggcgggcgtcggtggtggtcggccaggcatgcgggacacacgg1052acacaccatgcggcggcgggcgtcggtggggtcgcccaggcatgcggcaagacacg1052gccgggtgggctcggtggggctggtggggtcgccagggcatgcgg1052gccgggtggggctgggggggctggggggccggggggctggggg1052acacaccatgcggcgggggggctagggggcctgggggctagggg1052ggcagggggcctgggggggctggggggctggggggctggggg1052gcccggcggggctggggggcgctaggggctggggggctggggg1052ggccggggggcctggggggcgtcgggggctggggggctggggg1074caggcggcgggctggggggcctggggggctgggggg1074ggcaggcggggcggggggcctgggggggctgggg1074ggcggcggggcgggggggcctggggggggggggg1086gccggcgggggggggggggggggggggggggg1092ggcgaagattcacttatg		cggccgcgat	catctccgcc	tcgatctctt	cggtaatgaa	aaacggttcg	tcctggccgt	10260
ggcctcggtcaatgcgtcctcacggaaggcaccgcgccgcctggcctcggtgggcgtcac1036ttcctcgctgcgctcaagtgcgcggtacagggtcgagcgatgcacgccaagcagtgcac1044cgcctctttcacggtgggcggtcagggcgggtcgagcgatgcacgccaagcagtgcac105640gctccgggtgcggtcgaggggccaacttcacgcctcgggcctcggcgcgacacacg1062acacaccatgcggccggccgggctggtgtgtgtcggcccaggctaggggggcaacacg1062acagccggccgggccggccgggctggtgtgtgtcggccggcgacacgg1062gcccggccgggccggcggggctggtgtgtgtcggccggcgacacgg1062ggccggccgggccggcggggccggcggcaagacgg10621062ggccggcggggccggcggggctggggggctacgg10621062ggccggcggggccggcggggctgggggggctaggggggctacgg1062ggccggcggggccggcggggctgggggggctgggggggctacgg1062ggccggcggggccggcggggctgggggggctggggg10741080ggccggcggggcggtggggcctggggggggctggggg10801080ggcggcaggggcggcggggcggggggggcgggggg10821086gccggcaggttcatttatgggggggggcaadacctggggagg1086gccggcaggccggcggggcggggggggcggggggggcggggg109245ggcggcgggcctgtgggggcgggggggggcgggggggg109245ggcggggggcctggggggggg	35	cctaatacaa	tttcatgctt	gttcctcttg	gcgttcattc	tcggcggccg	ccagggcgtc	10320
 tteetegetg egeteaagtg egeggtacag ggtegagega tgeaegecaa geagtgeage 1044 egeetettte aeggtgegg etteetggte gateageteg eggeetgge egatetgte 10500 geteeggtg eggtegatga ttagggaege geeteggaet eaegeeteg geattgeeg eetteeggeet 10620 geteeggeeg eggeeggeeg geeteetgga tgeggeede geagteegg eggtaggg tgetgeggge geetgeeggeeg geeteetgga tgegetegge aatgteeagt aggtegggg eggtggtg geetgeggg eggtggtg teeggeegg		aacctcaatc	aatgcgtcct	cacggaaggc	accgcgccgc	ctggcctcgg	tgggcgtcac	10380
40cgcctctttcacggtgcgggtcctggtgggcctggggggccaacttcacgcctcgggcctggggg1050040gctccgggtgcggtcgatgattagggaacgctcgaactcggccatgcggcgacacggg1062040gctccgggtgcggtcgggggcctggggggtcggccaaggcatgggggggcatagggg1062040gctccgggtgggccggcggggctggggggtcggccaaggcatggggg1062040gctccgggtgggccggcggggctggggggtcggccaaggcatagcag1062040gctcgggtgggccggcggggctgggggtcgggccaggctagggg1074040gccggcggggccggggggcctggggggtcgcagggggctggggg1074040ggcgggggggccggggggccgggggggtcggggggggcagggg1074041ggcgggggggcgggggggcggggggggcggggggggcagggggggcagccgg1074042ggcggggggggcgggggggccggggggggcggggggggcgggggg1074045ggcggcgggtgcgggggggcctgtgggggcggggg109201092045ggcgggggggccggggggggcggggggggcgggggg109201092045ggcgggggggcctgtcggtactattatgggggggtcggggggg1092045ggcgggggggcctggggggcctgggggtactattaggaggggggtcggggggg1092045ggcgggggggcctggggggcctgggggtactattatggggggggtcgggggggg1092045ggcgggggggcctggggggc		ttcctcqctq	cqctcaagtg	cgcggtacag	ggtcgagcga	tgcacgccaa	gcagtgcagc	10440.
40cggggtgagggtagggcgggggccaacttcacgcctcgggcctggcgc105640gctccgggtgcggtcgatgattagggaacgctcgaactcggcaatgccggcgaacacggt106240gctccgggtgggccggcgggcgtggtgtgtcggccacggctatgccgggctacggg106240gcccgcgccggcctctggagcggtggtgtgtcggccacggctatgcgggctacggg106240gcccgcgccggcctctggatgcgctcgcaggtcgcggggctacgca106340gcccgcgccggcctctggatgcgctcgcaatgtccagtaggtcgcgg107441gccggcgccggccggggtcgctgtacaacgtcgggggtgctgggg107442ggccagctcgggcgggtgggcctgcaggctgtacaacgtcggggg108645ggcatagccgggcggcgggcctgtgggggtaatgctgggaagg109245ggcatagccagcaggcggcggggggggctatgcgtccggtca109345ggcatagccagcaggcggcggcggcgttctactta1092109246gccggggggcctgcggtacttaggctgtgcggagaaaagg110447caggggggggcctgcgggtccgggggtcggaagg1092109247ggccgaagagccgggggggggtacttaggctgtgcgggagaaaggg110448ttccacttatgcggggggggtcgggggggggggggggtcggggggggggggggggggggggggggggggggggg		cqcctctttc	acggtgcggc	cttcctggtc	gatcagctcg	cgggcgtgcg	cgatctgtgc	10500
40geteeggtg eggtegatga ttagggaaeg etegaaeteg geaatgeegg egaaeaeggt 106240caacaecatg eggeeggeeg gegtggtgt gteggeeaeggetaegegg egaaeaeggt 106240caacaeeatg eggeeggeeg gegtggtgt gteggeeaeggetaegeag40geeegeegg eggeeggeeg geetggtgt gteggeeaeggeetgeegg40geeegeegg geeteetgga tgeegeeaeggeetgeegg40geeegeegg geeteetgga tgeegeeaeggeetgeegg40geeegeegg geeteetggeggeetgeegg40geeegeegg geeteetggegeetgeegg41geeegeegg egeegeeggeetgeegg42ggeegeegggeetgeegg43ggeetageegeetgeegg445ggeetageeggeegeegg45ggeetageegeetgeegg46ggeetageegeetgeegg475ggeetageegeetgeegg485ggeetageegeetgeegg496geetaageegeetgeegg497ggeetageegeetgeegg498gtegeeagegeetgeegg499geetgeeggetetaeetta499geetgeeggetetaeetta499geetgeeggetetaeetta499geetgeeggetetaeetta40ggeegeeggegeetgeegge40geetgeeggegeetgeegge410geetgeeggegeetgeegg425ggeetgeegggeetgeegge436geetgeeggegeetgeegge437ggeetgeeggegeetgeegg438gteegeeggegeetgeegg439geetgeeggtetgeegge430geetgeegg		cqqqqtqaqq	qtaqqqqqqq	ggccaaactt	cacgcctcgg	gccttggcgg	cctcgcgccc	10560
 caacaccatg cggccggcg gcgtggtggt gtcggcccac ggctctgcca ggctacgcag 1068 gcccgcgccg gcctcctgga tgcgctcgc aatgtccagt aggtcgcggg tgctgggtc caggcggtct agcctggtca ctgtcacaac gtcgccaggg cgtaggtggt caagcatcct 1080 ggccagctcc gggcggtcgc gcctggtgcc ggtgatcttc tcggaaaaca gcttggtgca 1092 ggcatagccc agcaggccag cggcggcgct cttgttcatg gcgtaatgtc tccggttca 1098 gtcgcaagta ttctacttta tgcgactaaa acacgcgaca agaaaacgcc aggaaaaaggg 1104 cagaggggtg cggtggtgca cgactgcgg taacttagga cttgtgcga atgtcgtt cagaaaacg 1104 ggccactgaa cgtcagaagc cgactgcact atagcagcgg aggggttgga tcgatcctg 1116 ctcgcgcagg ctgggtgcca agctccggg tacctcggg taactacaag gcccgatcct tggagccct 1122 gccctcccgc acgatgatcg tgccgtgatc gaaatccaga tccttgaccc gcagttgcaa 1128 accctccactg atccgcatgc catgtccga caagagctg ggaacaaca gaagggcgcc 1134 ttccagaaaa ccgaggatgc gaaccactt atccgggtca agcaccaccg gcagtgccc 1134 ttccagaaaa cgaaggccg caatgcctg caatgcctg acgatgcgg agaccact atccggggt agcaccaccg gcagtgccc 1140 ggacggccga ggtcttccga tctcctgaag ccagtgcgg agaccaac gcactgccg 1146 	40	actecaaata	cqqtcqatga	ttagggaacg	ctcgaactcg	gcaatgccgg	cgaacacggt	10620
45gcccgcgcg gcctgtgg gcctggg gcctgggg gccgggggggg		caacaccatq	caaccaacca	gcgtggtggt	gtcggcccac	ggctctgcca	ggctacgcag	10680
 caggeggtet ageetggtea etgteacaae gtegeeagg egtaggtggt caageateet 10800 ggeeagetee gggeggtege geetggtgee ggtgatette teggaaaaca gettggtgaa ggeageegeg tgeagttegg eeegttggtt ggteaagtee tggtegtegg tgetgaegeg ggeatageee ageaggeeag eggeggeget ettgtteatg gegtaatgte teeggtetaa ggeatagee ageaggeege taaettagga ettgtgegae agaaaaegee aggaaaaggg teegeeagg etgggtgeea ageetgegg taaeettegg aggggttgga tegateeet ggeetgeege etgeggtgeea ageetgeege taaeettagga ettgtgegae atgteettt eagaagaeegg teegeeagg etgggtgeea ageetgegg taaeetteegg taaeeteeag agggggttgga tegateeet ggeetteeege aegatgateg tgeegtgate gaaateeegg aggggttgga tegateeet ggeetteeege aegatgateg tgeegtgate gaaateeegg geegaaeaae gatgetegee teegeeaga ggeetteega teteetgaag eeagggege aggegeega aegeetgeee ggeetteeege aggeggtge gaaeeaette ateeggggte ageeaeaee geagttgeea teegeeaga ggeetteega teteetgaag eeaggegge agaeegaaee ettgeegeegg teegeeage aggeggtege eaatgeege eeaggeege eggetgaaee ettgeegeege teegeeage aggeggtege eaatgeege eggtgeega eeaggeggeegeegeegeegeegeegeegeegeegeegee		acccacacca	gcctcctqqa	tgcgctcggc	aatgtccagt	aggtcgcggg	tgctgcgggc	10740
45ggccagctccgggcggtcgcgcctggtgccggtgatcttctcggaaaacagcttggtgca108645ggcatagcccagcaggccggtgcagttcggcccgttggttggtcaagtcctggtcgtagtcg109245ggcatagcccagcaggccggccggtggggctcttgttcatggggtaatgtctccggttcta109845ggcatagcccagcaggccggcggcggggcgctcttgttcatggggaaaaaggg110446gtcgcaagtattctactttatgcgaacaaaacacgcggacaagaaaacgccaggaaaaggg111047cagggcggcagcctgtcgcgtaacttaggacttgtgcgacatgtcgttttcagaagacgg111048ctgcactgaacgtcagaagccgactgacatatagcagcggaggggttggatcgatccctg111650gccctcccgcacgatgatcgtgccgtgatcgaaatccaaggccagttgcaa112250gccctcccgcacgatgatcgtgccgtgatcgaaatccaagtccttgacccgcagttgcaa112850gccctcccgcacgatgatcgtgccgtgatcgaaatccaagtccttgacccgcagttgcaa112850gccctcccgcacgatgatcgtgccgtgatcgaaatccaagtccttgacccgcagttgcaa112850gccctcccgaaccctcactgccgatgcccaagaaagccggggcc1134112850gcccgaaaaccgaggatgcgaaccactcaccctgggggccgaagggcgg113450ggacggccgaggggggggggggggggggggggggggggggggg		caggcggtct	agcctggtca	ctgtcacaac	gtcgccaggg	cgtaggtggt	caagcatcct	10800
 gccggccgcg tgcagttcgg cccgttggtt ggtcaagtcc tggtcgtcgg tgctgacgcg 1092 ggcatagccc agcaggccag cggcggcgct cttgttcatg gcgtaatgtc tccggttcta 1098 gtcgcaagta ttctacttta tgcgactaaa acacgcgaca agaaaacgcc aggaaaaggg 1104 caggggcggca gcctgtcgcg taacttagga cttgtgcgac atgtcgtttt cagaagacgg 1110 ctgcactgaa cgtcagaagc cgactgcact atagcagcgg aggggttgga tcgatcctg 1116 ctcgcgcagg ctgggtgcca agctctcggg taacatcaag gcccgatcct tggagccet 1122 gccttcccgc acgatgatcg tgccgtgatc gaaatccaga tccttgaccc gcagttgcaa 1128 accctcactg atccgcatgc ccgttccata cagaagctgg gcgaacaaac gatgctcgcc 1134 ttccagaaaa ccgaggatgc gaaccacttc atccggggtc agcaccaccg gcaagcgccc 1140 ggacggccga ggtcttccga tctcctgaag ccagggcaga tccgtgcaca gcacttgccg 1146 tagaagaaca gcaaggccgc caatgcctga cgatgctgc ccaaggttgc ccaggttgcaca 1158 		ggccagetce	agacagtcac	gcctggtgcc	ggtgatette	tcggaaaaca	gcttggtgca	10860
 ggcatagccc agcaggccag cggcggcgct cttgttcatg gcgtaatgtc tccggttcta 1098 gtcgcaagta ttctacttta tgcgactaaa acacgcgaca agaaaacgcc aggaaaaggg 1104 cagggcggca gcctgtcgcg taacttagga cttgtgcgac atgtcgtttt cagaagacgg 1110 ctgcactgaa cgtcagaagc cgactgcact atagcagcgg aggggttgga tcgatccctg fo gcctcccgc acgatgatcg tgccgtgatc gaaatccaga tccttgaccc gcagttgcaa 1128 accctcactg atccgcatgc ccgttccata cagaagctgg gcgaacaaac gatgctcgcc 1134 ttccagaaaa ccgaggatgc gaaccacttc atccggggtc agcagcgcca 1140 ggacggccga ggtcttccga tctcctgaag ccagggcgaa tccgtgcaca gcaagtgccc 1140 ggacggccga ggtcttccga tctcctgaag ccagggcaga tccgtgcaca gcacttgccg 1146 ttcgccagcc aggacgccc caatgcctga cgatgcgtg agaccgaac cttgcgctcg 1152 		accaaccaca	tqcaqttcqq	cccqttggtt	ggtcaagtcc	tggtcgtcgg	tgctgacgcg	10920
gtcgcaagta ttctacttta tgcgactaaa acacgcgaca agaaaacgcc aggaaaaggg1104cagggcggca gcctgtcgcg taacttagga cttgtgcgac atgtcgtttt cagaagacgg1110ctgcactgaa cgtcagaagc cgactgcact atagcagcgg aggggttgga tcgatccctg1110ctcgcgcagg ctgggtgcca agctctcggg taacatcaag gcccgatcct tggagccett112250gccctcccgc acgatgatcg tgccgtgatc gaaatccaga tccttgaccc gcagttgcaa112850gccctcccgc acgatgatcg tgccgtgatc gaaatccaga tccttgaccc gcagttgcaa112850gccctcccgc acgatgatcg tgccgtgatc gaaatccaga tccttgaccc gcagttgcaa112850gccctcccga acgatgatcg tgccgtgatc gaaatccaga tccttgaccc gcagttgcaa112850gccctcccga acgatgatcg tgccgtgatc gaaccacta cagaagctgg gcgaacaaac gatgctcgcc114050ggacggccga ggtcttccga tccttgaag ccggggg gcgaacaaac gatgctcgcc114050ggacggccga ggtcttccga tctcctgaag ccaggggtg gcgaacaaac gatgctcgcc114050gccctcccgc acgatgatgc gaaccacttc atccggggtc agcaccaccg gcaagcgccc114050gccctcccga ggggtgcg ccagggcgg gaaccactc atccggggtg gcgaacaaac gatgctcgcc114050gccctcccga gggggtgcg ccagggggggtgg gaaccacaccg gcaagcgccc114050ggacggccga ggtcttccga tctcctgaag ccagggcgg agccgaacacac gaagcgccc114050ggacggccga ggtcttccga tctcctgaag ccagggggg gcaacaaac gaagcgccc114050ggacggccga ggtcttccga tctcctgaag ccagggggg gcaacaacc gcaactgccg gaagcgccc114050ggacggccga ggtcttccga tctcctgaag ccagggggg gcaacaac gaagcgccc114050gcacgccgaaca gcaaggccg caatgcccga gcaaggggg gcaacaac gcactgcgg gaaccacacc gaagggggggggg	45	ggcatagccc	agcaggccag	caacaacact	cttgttcatg	gcgtaatgtc	tccggttcta	10980
cagggcggca gcctgtcgcg taacttagga cttgtgcgac atgtcgtttt cagaagacgg 1110 ctgcactgaa cgtcagaage cgactgcact atagcagcgg aggggttgga tcgatccetg 1116 ctcgcgcagg ctgggtgcca ageteteggg taacatcaag gecegateet tggageeett 1122 50 gccetecege acgatgateg tgccgtgate gaaateeaga teettgacee geagttgcaa 1128 acceteaetg ateegeatge cegtteeata cagaagetgg gegaacaaae gatgetegee 1134 tteeagaaaa eegaggatge gaaceaette ateeggggte ageaeeaee geaagegeee 1140 ggaeggeega ggtetteega teteetgaag eeagggega ageetgeee 1140 tagaagaaea geaaggeege caatgeetga egatgeegg agaeegaae ettgeegee 1146 tagaagaaea geaaggeege caatgeetga egatgeetge gaaceeaee 1152 tteegeeagee aggaeagaa tgeetegaet tegetgetge egagttge egggtgaeee 1158		gtcgcaagta	ttctacttta	tgcgactaaa	acacgcgaca	agaaaacgcc	aggaaaaggg	11040
ctgcactgaa cgtcagaage cgactgcact atagcagegg aggggttgga tegatecetg1116ctcgcgcagg ctgggtgcca ageteteggg taacateaag geeegateet tggageeett112250geeeteege acgatgateg tgeegtgate gaaateeaga teettgaeee geagttgeaa112850acceteaetg ateegeatge cegtteeata cagaagetgg gegaacaaae gatgetegee113450acceteaetg ateegeatge cegtteeata cagaagetgg gegaacaaae gatgetegee113450ggaeggeega ggtetteega teteetgaag eeggggte ageaecaee geagtegee114050ggaeggeega ggtetteega teteetgaag eeaggggte ageaecaee geaageeee114050ggaeggeega ggtetteega teteetgaag eeagggeega teegtgeaea geaettgeee114050ggaeggeega ggtetteega teteetgaag eeagggeega ageeetgeeee114050ggaeggeega ggtetteega teteetgaag eeagggeega ageeetgeeeee114050tegeeggeega ggtetteega teteetgaag eeagggeega ageeetgeeeeee114050tegeeggeega ggtetteega teteetgaag eeagggeega geaeetgeeeeeeeee114050tegeeggeega ggtetteega teteetgaag eeagggeega geaeetgeeeeeeeeee		cagggcggca	acctatcaca	taacttagga	cttgtgcgac	atgtcgtttt	cagaagacgg	11100
50ctcgcgcagg ctgggtgcca agctctcggg taacatcaag gcccgatcct tggagccctt112250gccctcccgc acgatgatcg tgccgtgatc gaaatccaga tccttgaccc gcagttgcaa1128accctcactg atccgcatgc ccgttccata cagaagctgg gcgaacaaac gatgctcgcc1134ttccagaaaa ccgaggatgc gaaccacttc atccggggtc agcaccaccg gcaagcgccc1140ggacggccga ggtcttccga tctcctgaag ccagggcaga tccgtgcaca gcacttgccg1146tagaagaaca gcaaggccgc caatgcctga cgatgcgg gaaccaac cttgcgctcg1152ttccgccagcc aqgacagaaa tgcctcgac tcgctgcaca gcacttgccg1158		ctgcactgaa	catcagaage	cgactgcact	atagcagcgg	aggggttgga	tcgatccctg	11160
50 gccctcccgc acgatgatcg tgccgtgatc gaaatccaga tecttgaccc gcagttgcaa 1128 accctcactg atccgcatge ccgttccata cagaagetgg gcgaacaaac gatgetegec 1134 ttccagaaaa ccgaggatge gaaccaette atccggggte ageaceaecg gcaagegeec 1140 ggacggeega ggtettecga teteetgaag ccagggeaga teegtgeaea geaettgeeg 1146 tagaagaaca gcaaggeege caatgeetga cgatgegtgg agaecgaaae ettgegeteg 1152 ttegecagee aqqacagaaa tgeetegaet tegetgetge ccaaggttge egggtgaege 1158		ctcgcgcagg	ctoootocca	ageteteggg	taacatcaag	gcccgatcct	tggagccctt	11220
acceteactg atoegeatge cegtteeata eagaagetgg gegaacaaae gatgetegee 1134 tteeagaaaa eegaggatge gaaceaette ateeggggte ageaeeaeg geaagegeee 1140 ggaeggeega ggtetteega teteetgaag eeagggeaga teegtgeaea geaettgeeg 1146 tagaagaaea geaaggeege eaatgeetga egatgegtgg agaeegaaae ettgegeteg 1152 ttegeeagee aqqaeagaaa tgeetegaet tegetgetge ceaaggttge egggtgaege 1158	50	acctcccac	accatcatca	tgccgtgatc	gaaatccaga	tccttgaccc	gcagttgcaa	11280
ttccagaaaa ccgaggatge gaaccaette ateeggggte ageaceaeeg geaagegeee 1140 ggaeggeega ggtetteega teteetgaag ceagggeaga teegtgeaea geaettgeeg 1146 tagaagaaea geaaggeege caatgeetga egatgegtgg agaeegaaae ettgegeteg 1152 ttegeeagee aqqaeagaaa tgeetegaet tegetgetge ceaaggttge egggtgaege 1158	50	acctcactq	atccgcatgc	ccqttccata	cagaagetgg	gcgaacaaac	gatgetegee	11340
ggacggccga ggtcttccga tctcctgaag ccagggcaga tccgtgcaca gcacttgccg 1146 tagaagaaca gcaaggccgc caatgcctga cgatgcgtgg agaccgaaac cttgcgctcg 1152 ttcgccagcc aqqacagaaa tgcctcgact tcgctgctgc ccaaggttgc cgggtgacgc 1158		ttccagaaaa	ccgaggatge	gaaccacttc	atcoggggtc	agcaccaccq	gcaagcgccc	11400
tagaagaaca gcaaggccgc caatgcctga cgatgcgtgg agaccgaaac cttgcgctcg 1152 ttcgccagcc aggacagaaa tgcctcgact tcgctgctgc ccaaggttgc cgggtgacgc 1158		aasaaccas	agtetteega	tctcctgaag	ccaggqcaqa	tccgtgcaca	gcacttgccg	11460
ttcgccagcc aqqacagaaa tgcctcgact tcgctgctgc ccaaggttgc cgggtgacgc 1158		tagaagaaga	gcaaggccgc	caatgeetga	cgatgcqtqq	agaccgaaac	cttgcgctcg	11520
		ttaacaaga	addacadaaa	tgcctcgact	tegetgetac	ccaaggttgc	cgggtgacgc	11580
	55	acaccotoca	aacggatgaa	qqcacqaacc	cagtggacat	aagcetgtte	ggttcgtaag	11640
				<u> </u>				

EP 1 616 013 B1

8040

8100

8160

8220

8280

8340

8400

	ctgtaatgca	agtagcgtat	gcgctcacgc	aactggtcca	gaaccttgac	cgaacgcagc	11700
	ggtggtaacg	gcgcagtggc	ggttttcatg	gcttgttatg	actgttttt	tggggtacag	11760
	tctatgcctc	gggcatccaa	gcagcaagcg	cgttacgccg	tgggtcgatg	tttgatgtta	11820
5	tggagcagca	acgatgttac	gcagcagggc	agtegeeeta	aaacaaagtt	aaacatcatg	11880
	agggaagcgg	tgatcgccga	agtatcgact	caactatcag	aggtagttgg	cgtcatcgag	11940
	cgccatctcg	aaccgacgtt	gctggccgta	catttgtacg	gctccgcagt	ggatggcggc	12000
	ctgaagccac	acagtgatat	tgatttgctg	gttacggtga	ccgtaaggct	tgatgaaaca	12060
	acgcggcgag	ctttgatcaa	cgaccttttg	gaaacttcgg	cttcccctgg	agagagcgag	12120
	attctccgcg	ctgtagaagt	caccattgtt	gtgcacgacg	acatcattcc	gtggcgttat	12180
10			atttggagaa				12240
	ttcgagccag	ccacgatcga	cattgatctg	gctatcttgc	tgacaaaagc	aagagaacat	12300
			agcggcggag				12360
	ctatttgagg	cgctaaatga	aaccttaacg	ctatggaact	cgccgcccga	ctgggctggc	12420
			tacgttgtcc				12480
15			tgccgactgg				12540
15			acaggettat				12600
			atttgtccac				12660
			tcgttcaagc				12720
	agcgttagat	gcactaagca	cataattgct	cacagccaaa	ctatcaggtc	aagtctgctt	12780
			taataagccc				12840
20			caatagttgg				12900
			tagettgett				12960
	attgtacctg	cgttcaaata	ctttgcgatc	gtgttgcgcg	cctgcccggt	gcgtcggctg	13020
			ctctcgcaac				13080
			ccgtcgctca				13140
			gcctaaccgg				13200
25		tgcaaagcgg					13226

30 Claims

1. A method to produce a plant tolerant to stress conditions comprising the steps of

(a) providing plant cells with a chimeric gene to create transgenic plant cells, said chimeric gene comprising the following operably linked DNA fragments

- (i) a plant-expressible promoter;
- (ii) a DNA region, which when transcribed yields a ParG inhibitory RNA molecule;
- (iii) a 3' end region involved in transcription termination and polyadenylation;

40

45

35

- (b) regenerating a population of transgenic plant lines from said transgenic plant cell; and (c) identifying a stress tolerant plant line within said population of transgenic plant lines.
- 2. The method according to claim 1, wherein said parG inhibitory RNA molecule comprises a nucleotide sequence of at least 20 consecutive nucleotides of the nucleotide sequence of the ParG gene present in said plant cell.
 - 3. The method according to claim 1, wherein said parG inhibitory RNA molecule comprises a nucleotide sequence of at least 20 consecutive nucleotides of the complement of the nucleotide sequence of the ParG gene present in said plant cell.

- 4. The method according to claim 2 or 3, wherein said chimeric gene further comprises a DNA region encoding a selfsplicing ribozyme between said DNA region coding for said parG inhibitory RNA molecule and said 3' end region.
- 5. The method according to claim 1, wherein said parG inhibitory RNA comprises a sense region comprising a nucleotide sequence of at least 20 consecutive nucleotides of the nucleotide sequence of the ParG gene present in said plant cell and an antisense region comprising a nucleotide sequence of at least 20 consecutive nucleotides of the complement of the nucleotide sequence of the ParG gene present in said plant cell, wherein said sense and antisense region are capable of forming a double stranded RNA region comprising said at least 20 consecutive nucleotides.

- **6.** The method according to anyone of claims 1 to 5 wherein said stress conditions are selected from heat, drought, nutrient depletion, oxidative stress or high light conditions.
- 7. The method according to anyone of claims 1 to 6, comprising further crossing said transgenic plant line with another plant line to obtain stress tolerant progeny plants.
- 8. A DNA molecule comprising
 - (i) a plant-expressible promoter;
 - (ii) a DNA region, which when transcribed yields a ParG inhibitory RNA molecule;
 - (iii) a 3' end region involved in transcription termination and polyadenylation.
- 9. The DNA molecule according to claim 8, wherein said DNA region comprises a nucleotide sequence of at least 21 to 100 nucleotides of a nucleotide sequence encoding a protein comprising the amino acid sequence of SEQ ID No 1, 2 or 16 or ot least 21 to 100 nucleotide sequence of a nucleotide sequence of SEQ ID No 1, 2 or 16 or ot least 21 to 100 nucleotide sequence of a nucleotide sequence of SEQ ID No 1, 2 or 16 or ot least 21 to 100 nucleotide sequence of a nucleotide sequence of SEQ ID No 1, 2 or 16 or ot least 21 to 100 nucleotide sequence of a nucleotide sequence of SEQ ID No 1, 2 or 16 or ot least 21 to 100 nucleotide sequence of a nucleotide sequence of SEQ ID No 1, 2 or 16 or ot least 21 to 100 nucleotide sequence of a nucleotide sequence of a nucleotide sequence of a nucleotide sequence of SEQ ID No 1, 2 or 16 or ot least 21 to 100 nucleotide sequence of a nucleotide sequenc
- 1, 2 or 16 or at least 21 to 100 nucleotides of a nucleotide sequence of SEQ ID 3, 4, 15 or 23.
 - **10.** A plant cell comprising the DNA molecule of claim 8 or 9.
 - **11.** A plant consisting essentially of the plant cells of claim 10.
 - **12.** Seeds and propagating material of a plant according to claim 11, comprising the chimeric gene of claim 9 or 10.
 - 13. A method to produce a plant tolerant to stress conditions comprising the steps of
- 25

20

5

10

15

(a) subjecting a plant cell line or a plant or plant line, to mutagenesis;

(b) identifying those plant cells or plants that have a mutation in an endogenous ParG gene resulting in a reduction of the PARG activity;

- (c) subjecting the identified plant cells or plants to stress conditions;
- (d) identifying plant cells or plants that tolerate said stress conditions better than control plants.
- 30

35

50

- 14. A method to produce a plant tolerant to stress conditions comprising the steps of
 - (a) selecting a plant cell line or a plant or plant line which is resistant to gallotannines;
 - (b) identifying those plant cells or plants that have a mutation in an endogenous ParG gene resulting in a reduction of the PARG activity;
 - (c) subjecting the identified plant cells or plants to stress conditions;
 - (d) identifying plant cells or plants that tolerate said stress conditions better than control plants.

40 Patentansprüche

- 1. Verfahren zur Herstellung einer gegenüber Stressbedingungen toleranten Pflanze, umfassend die folgenden Schritte:
- (a) Bereitstellen von Pflanzenzellen mit einem chimären Gen zur Erzeugung von transgenen Pflanzenzellen,
 wobei das chimäre Gen die folgenden operativ verknüpften DNA-Fragmente umfasst:
 - (i) einen in Pflanzen exprimierbaren Promoter;
 - (ii) eine DNA-Region, die, wenn sie transkribiert wird, ein ParG-hemmendes RNA-Molekül ergibt;
 - (iii) eine 3'-terminale Region, die an der Transkriptionstermination und der Polyadenylierung beteiligt ist;
 - (b) Regenerieren einer Population von transgenen Pflanzenlinien aus der transgenen Pflanzenzelle; und(c) Identifizieren einer stresstoleranten Pflanzenlinie innerhalb der Population von transgenen Pflanzenlinien.
- Verfahren nach Anspruch 1, wobei das ParG-hemmende RNA-Molekül eine Nukleotidsequenz mit mindestens 20 aufeinanderfolgenden Nukleotiden der Nukleotidsequenz des in der Pflanzenzelle vorhandenen ParG-Gens umfasst.

- 3. Verfahren nach Anspruch 1, wobei das ParG-hemmende RNA-Molekül eine Nukleotidsequenz mit mindestens 20 aufeinanderfolgenden Nukleotiden des Komplements der Nukleotidsequenz des in der Pflanzenzelle vorhandenen ParG-Gens umfasst.
- 5 4. Verfahren nach Anspruch 2 oder 3, wobei das chimäre Gen weiterhin eine DNA-Region, die für ein selbstspleißendes Ribozym codiert, zwischen der DNA-Region, die für das ParG-hemmende RNA-Molekül codiert, und der 3'-terminalen Region umfasst.
- 5. Verfahren nach Anspruch 1, wobei die ParG-hemmende RNA eine sense-Region umfassend eine Nukleotidsequenz mit mindestens 20 aufeinanderfolgenden Nukleotiden der Nukleotidsequenz des in der Pflanzenzelle vorhandenen ParG-Gens umfasst und eine antisense-Region umfassend eine Nukleotidsequenz mit mindestens 20 aufeinanderfolgenden Nukleotiden des Komplements der Nukleotidsequenz des in der Pflanzenzelle vorhandenen ParG-Gens umfasst, wobei die sense- und die antisense-Region f\u00e4hig sind, eine Doppelstrang-RNA-Region umfassend mindestens 20 aufeinanderfolgende Nukleotide zu bilden.
- 15

20

25

- **6.** Verfahren nach einem der Ansprüche 1 bis 5, wobei die Stressbedingungen aus der Reihe Hitze, Trockenheit, Nährstoffverarmung, Oxidationsstress oder Starklichtbedingungen ausgewählt sind.
- 7. Verfahren nach einem der Ansprüche 1 bis 6, das weiterhin umfasst, dass man die transgene Pflanzenlinie mit einer anderen Pflanzenlinie kreuzt, um stresstolerante Nachkommenschaftspflanzen zu erhalten.
 - 8. DNA-Molekül, das Folgendes umfasst:

(i) einen in Pflanzen exprimierbaren Promoter;

- (ii) eine DNA-Region, die, wenn sie transkribiert wird, ein ParG-hemmendes RNA-Molekül ergibt;
- 9. DNA-Molekül nach Anspruch 8, wobei die DNA-Region eine Nukleotidsequenz mit mindestens 21 bis 100 Nukleotiden einer Nukleotidsequenz, die für ein Protein umfassend die Aminosäuresequenz von SEQ ID No 1, 2 oder 16 codiert, oder mindestens 21 bis 100 Nukleotide einer Nukleotidsequenz von SEQ ID No 3, 4, 15 oder 23 umfasst.
- 30
- 10. Pflanzenzelle, die das DNA-Molekül nach Anspruch 8 oder 9 umfasst.
- 11. Pflanze, die im Wesentlichen aus den Pflanzenzellen nach Anspruch 10 besteht.
- 35 12. Samen und Vermehrungsmaterial einer Pflanze nach Anspruch 11, umfassend das chimäre Gen nach Anspruch 9 oder 10.
 - **13.** Verfahren zur Herstellung einer Pflanze, die gegenüber Stressbedingungen tolerant ist, umfassend die folgenden Schritte:

40

(a) Mutagenisieren einer Pflanzenzelllinie oder einer Pflanze oder einer Pflanzenlinie;

(b) Identifizieren derjenigen Pflanzenzellen oder Pflanzen, die eine Mutation in einem endogenen ParG-Gen aufweisen, die zu einer Reduktion der PARG-Aktivität führt;

- (c) Aussetzen der identifizierten Pflanzenzellen oder Pflanzen an Stressbedingungen;
- (d) Identifizieren der Pflanzenzellen oder Pflanzen, die die Stressbedingungen besser tolerieren als Kontrollpflanzen.
 - **14.** Verfahren zur Herstellung einer Pflanze, die gegenüber Stressbedingungen tolerant ist, umfassend die folgenden Schritte:

50

55

(a) Selektieren einer Pflanzenzelllinie oder einer Pflanze oder einer Pflanzenlinie, die gegenüber Gallotanninen resistent ist;

(b) Identifizieren derjenigen Pflanzenzellen oder Pflanzen, die eine Mutation in einem endogenen ParG-Gen aufweisen, die zu einer Reduktion der PARG-Aktivität führt;

(c) Aussetzen der identifizierten Pflanzenzellen oder Pflanzen an Stressbedingungen;

(d) Identifizieren der Pflanzenzellen oder Pflanzen, die die Stressbedingungen besser tolerieren als Kontrollpflanzen.

Revendications

- 1. Procédé de production d'une plante tolérante à des conditions de stress, comprenant les étapes de
- 5 (a) mise à disposition de cellules végétales comportant un gène chimère pour créer des cellules de plantes transgéniques, ledit gène chimère comprenant les fragments d'ADN liés d'une manière opérationnelle suivants :
 - (i) un promoteur exprimable dans des plantes ;
 - (ii) une région d'ADN qui, après transcription, donne une molécule d'ARN inhibitrice de ParG ;
 - (iii)une région 3'-terminale impliquée dans la terminaison de transcription et dans la polyadénylation ;

(b) régénération d'une population de lignées de plantes transgéniques à partir de ladite cellule de plantes transgéniques ; et

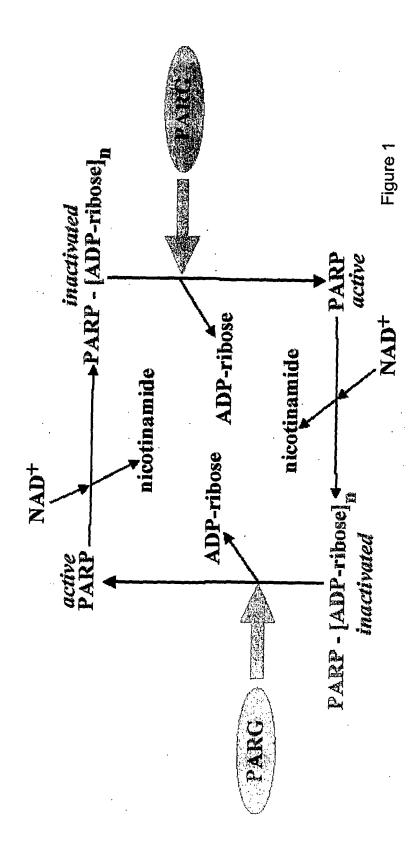
15

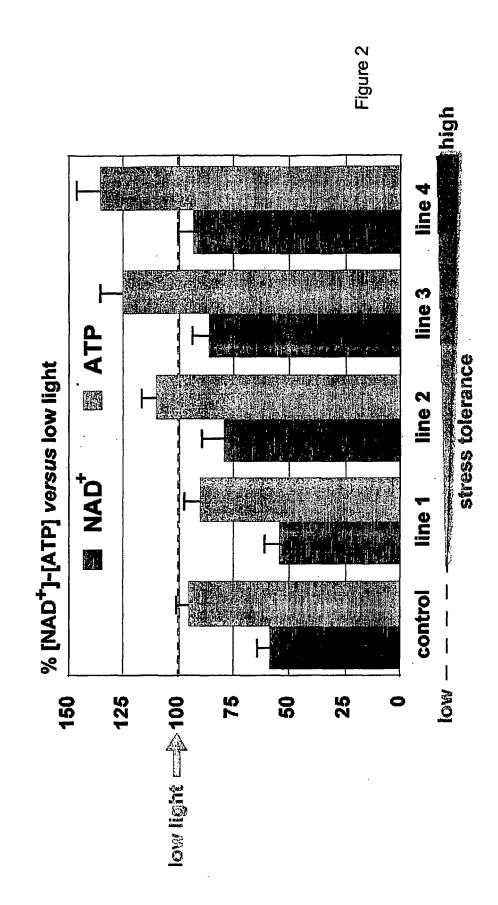
10

(c) identification d'une lignée de plantes tolérantes au stress, à l'intérieur de ladite population de lignées de plantes transgéniques.

- 2. Procédé selon la revendication 1, dans lequel ladite molécule d'ARN inhibitrice de ParG comprend une séquence nucléotidique d'au moins 20 nucléotides consécutifs de la séquence nucléotidique du gène ParG présent dans ladite cellule végétale.
- 20
- 3. Procédé selon la revendication 1, dans lequel ladite molécule d'ARN inhibitrice de ParG comprend une séquence nucléotidique d'au moins 20 nucléotides consécutifs du complément de la séquence nucléotidique du gène ParG présent dans ladite cellule végétale. séquence nucléotidique d'au moins 20 nucléotidique du gène ParG de la séquence nucléotidique du gène ParG présent dans ladite cellule végétale.
- 25

45


50


4. Procédé selon la revendication 2 ou 3, dans lequel ledit gène chimère comprend en outre une région d'ADN codant pour un ribozyme à auto-épissage entre ladite région d'ADN codant pour ladite molécule d'ARN inhibitrice de ParG et ladite région 3'-terminale.

- 5. Procédé selon la revendication 1, dans lequel ledit ARN inhibiteur de ParG comprend une région sens comprenant une séquence nucléotidique d'au moins 20 nucléotides consécutifs de la séquence nucléotidique du gène ParG présent dans ladite cellule végétale et une région antisens comprenant une séquence nucléotidique d'au moins 20 nucléotides consécutifs du complément de la séquence nucléotidique du gène ParG présent dans ladite cellule végétale, ladite région sens et ladite région antisens étant capables de former une région d'ARN double brin comprenant lesdits au moins 20 nucléotides consécutifs.
 - 6. Procédé selon l'une quelconque des revendications 1 à 5, dans lequel lesdites conditions de stress sont choisies parmi la chaleur, la sécheresse, l'épuisement en nutriments, le stress oxydatif ou les conditions d'une forte luminosité.
- 40 **7.** Procédé selon l'une quelconque des revendications 1 à 6, qui comprend en outre le croisement de ladite lignée de plantes transgéniques avec une autre lignée végétale pour obtenir des plantes de descendance tolérantes au stress.
 - 8. Molécule d'ADN, comprenant :
 - (i) un promoteur exprimable dans des plantes ; (ii) une région d'ADN qui, après transcription, donne une molécule d'ARN inhibitrice de ParG ;
 - 9. Molécule d'ADN selon la revendication 8, dans laquelle ladite région d'ADN comprend une séquence nucléotidique d'au moins 21 à 100 nucléotides d'une séquence nucléotidique codant pour une protéine comprenant la séquence d'acides aminés de SEQ ID N°1, 2 ou 16, ou au moins 21 à 100 nucléotides d'une séquence nucléotidique de SEQ ID N°3, 4, 15 ou 23.
 - **10.** Cellule végétale comprenant la molécule d'ADN de la revendication 8 ou 9.
- ⁵⁵ **11.** Plante consistant essentiellement en des cellules végétales de la revendication 10.
 - **12.** Graines et matériel de reproduction d'une plante selon la revendication 11, comprenant le gène chimère de la revendication 9 ou 10.

13. Procédé de production d'une plante tolérante à des conditions de stress, comprenant les étapes de

(a) soumission d'une lignée de cellules végétales ou d'une plante ou d'une lignée végétale à une mutagenèse ; (b) identification des cellules végétales ou des plantes qui possèdent une mutation dans un gène ParG endogène, 5 conduisant à une réduction de l'activité de ParG ; (c) soumission des cellules végétales ou des plantes identifiées à des conditions de stress; (d) identification des cellules végétales ou des plantes qui tolèrent lesdites conditions de stress mieux que des plantes témoins. 10 14. Procédé de production d'une plante tolérante à des conditions de stress, comprenant les étapes de (a) sélection d'une lignée de cellules végétales ou d'une plante ou d'une lignée végétale qui est résistante au gallotannines; (b) identification des cellules végétales ou des plantes qui possèdent une mutation dans un gène ParG endogène, 15 conduisant à une réduction de l'activité de ParG ; (c) soumission des cellules végétales ou des plantes identifiées à des conditions de stress ; (d) identification des cellules végétales ou des plantes qui tolèrent lesdites conditions de stress mieux que des plantes témoins. 20 25 30 35 40 45 50 55

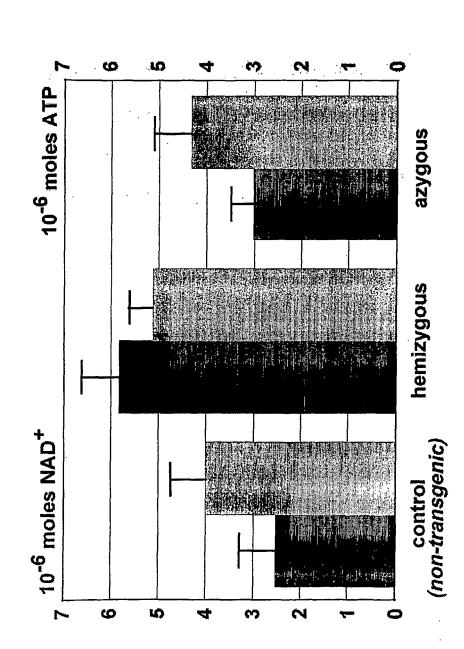


Figure 3

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- WO 0004173 A [0008] [0056] [0093] [0096] [0098]
- US 2002040490 A [0011]
- WO 03000898 A [0012]
- WO 03008540 A [0013]
- WO 0001133 A [0039]
- WO 9953050 A [0040] [0041]
- WO 02059294 A [0041]
- WO 9606932 A [0054]
- WO 8903887 A [0054]

Non-patent literature cited in the description

- Panda et al. Dev. Cell., 2002, vol. 3, 51-61 [0010]
- Sambrook et al. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, 1989 [0032]
- Targeted Induced Local Lesions in Genomes. McCa-Ilum et al. Plant Physiology. vol. 123, 439-442 [0058]
- Maes et al. Trends in Plant Science, 1999, vol. 4, 90-96 [0058]
- Ying et al. Proc. Natl. Acad. Sci. USA, 2001, vol. 98 (21), 12227-12232 [0059]
- Swanson, R.A. NeuroReport, 2000, vol. 11 (7), 1385-1388 [0059]
- Sambrook et al. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, 1989 [0065]
- Ausubel et al. Current Protocols in Molecular Biology. 1994, vol. 1, 2 [0065]
- R.D.D. Croy. Plant Molecular Biology Labfax. BIOS Scientific Publications Ltd (UK), 1993 [0065]

- WO 8910396 A [0054]
- WO 9213956 A [0054]
- WO 9713865 A [0054]
- WO 0063397 A [0057]
- WO 0213964 A [0057]
- WO 0175167 A [0058]
- EP 03076044 A [0141]
- US 60496688 B [0141]
- Sambrook ; Russell. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, 2001 [0065]
- Brown. Molecular Biology LabFax. Academic Press, 1998, vol. I, II [0065]
- Dieffenbach ; Dveksler. PCR Primer: A Laboratory Manual. Cold Spring Harbor Laboratory Press, 1995 [0065]
- McPherson. PCR Basics: From Background to Bench. Springer Verlag, 2000 [0065]
- Rawyler et al. *Plant Physiol.*, 1999, vol. 120, 293-300 [0107]
- De Block ; De Brouwer. Plant Physiol. Biochem., 2002, vol. 40, 845-852 [0114]
- Karp et al. Anal. Biochem., 1983, vol. 128, 175-180
 [0129]